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INTRODUCTION

This subject program was instituted in FY 1965. It is a cooperative endeavor of the
American Society for Engineering Education, the University of Maryland, the Catholic
University of America, and Goddard. This program is intended to operate on a two-year
cycle. Professors agree to participate during two consecutive summers.

The objectives of this program are re:my; some of them are listed below:

1. Stimulation of schools to become interested in the research problems now con-
fronting Goddard.

2. Creation of interest on the part of professors to continue their research after
completing the formal program.

3. Stimulation of our people professionally through associations with the professors
and through their participation in the program's seminars.

4. Establishment of closer ties with the Universities. We have been able, through
this program, to develop working relationships with the University of Maryland
and Catholic University which are outstanding. This is important for we have
more than 150 employees attending these schools.

5. An advertising to')l for Goddard which is most acceptable professionally. Every
major educational organization has been exposed to the fact of our participation.
ASEE is an influential professional organization.

Now that we have completed the first summer of this program we are happy to re-
port that the progress made on the above objectives was beyond our expectations con-
sidering that this was the first summer.

One of the goals that has been implied is the solution or approach to the solution of
Goddard problems that might be of interest to the Summer Fellowship participants: The
problems tlmt they selected are listed in the table of contents and the results are com-
piled in this report. It should be borne in mind that the time allotted for the solution of
the problem was very short (an equivalent of seven weeks) and consequently some of the
problems need more time for complete solution. Most of the 1965 Summer Fellows are
expected to return for the summer of 1966 in addition to the 15 new Fellows that we hope
to have this summer.

t
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DIGITAL _1 :R DESIGN

_y

William D. Stanley
Assistant Professor, Clemson University

NASA-ASEE Fellow

I. INTRODUCTION

Large-scale processing of telemetry data frequently requires filtering processes to
remove undesirable signals and noise that perturb the signal. In the case of analog sig-
nals, this process is normally accomplished by the use of RLC passive or RC active fil-
ters whose effect on the signal is usually described by the Fourier transform of the im-
pulse response. This characteristic is called the frequency response and consists of an
amplitude response and a phase response.

In processing sampled or digital data, it is often inconvenient or undesirable to em-
ploy analog filters for such filtering operations. Rather, it seems more feasible to pro-
gram a numer-'.cal algorithm on a digital computer which accomplishes the same task on
the digital data. The computer then becomes an integral part of the overall system, and
furthermore, it has the extra advantages of flexibility and ease of adjustment and change
that is usually not present in an analog filter.

The purpose of this paper is to present a study of the design of digital filters. Both
the approximation and the realization problems will be considered, and techniques will
be presented for designing both low-pass and bandpass filters. A survey of the literature
dealing with the fundamental theory will be made, and this will be followed by step-by-
step design procedures. The resulting "design" in each case will be a numerical algorithm
whose effect on the data is the desired filtering operation.

H. BASIC THEORY

For the purposes of this paper, the term "digital filter" wi!l be used to designate any
numer;.cal operation that can be performed on a set of data to alter the spectral repre-
sentation of the data in some desirable manner. Theoretically, such a filtering operation
could be done by pencil and paper or by a desk calculator if the proper sequence of oper-
ations is known. A more practical approach is to program the filter algorithm on a digital
computer and allow the computer to perform the filtering operation. The filter operation
can be performed on-line in real time or the data may be stored on tape and processed at
a lower rate.

t

The underlying approach to any digital filter is the theory of sampled-data systems.
There is an extensive amount of literature pertaining to the subject, and no exhaustive
survey of this literature will be attempted. Among the texts pertaining to sampled-data
systems are Ragazztni and Franklin (1), Jury (2), Tou (3), Monroe (4), and Kuo (5). All
of these books contain extensive bibliographies of the research literature pertaining to
sampled-data systems.

This paper will draw basic theorems and results freely from the above-named refer- !
ences. The proofs of these results will be repeated only when necessary for clarity or
further development.

i !
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A sampled signal may be represented_ the product of the continuous signal and a

k periodic pulse train. As far as a numerical process is concerned, the pulse train may
be considered as an impulse train. Let x(t) represent a continuous signal and x*(t)

i represent the sampled signal. The sampled signal may be represented as

•. x*(t)-x(t)_z(t) (I)

where T isthetime betweensamplesand

_zCt)---/ ,
o

as illustratedin Figure1.

x(t)

_.t

ST(t)

II1111111111.,
._1 T ._.-

x*(t)

l lll]l.Tlll,.,
Figure 1

Equations(I)and (2)are equivalentto

x*(t) = _ x(nT)b (t-nT) (3)

Let _ represent the process of Laplace transformation. The following definitions
are made:

F
£ Ix(t)] =x(s) (4)

_[x*(t)] =x*(s) (5)

t
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Transformation of Eq. (3) yields

X*(s) : _. x(nT) _-nT_ (6)
0

It can also be shown that (6) _s equivalent to

< T -,_

According to Eq. (7) the spectral representation of X*(s) is periodic. This i,1_a is
illustrated in Figure 2 for s = j_ (Fourier transform). As long as the minimum Nyquist
sampling rate is maintained, the original spectrum of x(t) is preserved, although modi-
fied by a factor, and the same spectrum is repeated on both sides at multiples of 1/T.

x*(]=)

_OJ

-1/T 1IT

Figure 2

The z-transform is ordinarily introduced to simplify the operation of a numerical
process. Let

z : _T, (8)

(9)
and X(z) -_ [x*(t)] :X(s)] T"

2thus X(z) : x(nT) z °" (I0) '
i

O
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Now assume that x*(t) (or equivalently X(z) ) is applied to the input of a lirear
numerical processor as shown in Figure 3. Let y*(t) represent the output and mt

Y(z):-_[y*it)] (11)

It can be shown that

Y(z) : G(z) X(z) (12)

Where G(z) represents a type of transfer function. In the case where the processor is a
hardware item such as an electrical network, G(z) is called the pulse-transfer function.
In the case where the processor is a software item such as a computer program (the case
of primary interest in this paper), G(z) is simply an algorithm whose form will be dis-
cussed in a later section.

1
\ G(z) I

x(t) x*(t) I y*(t)

Figure3

The transformation of Eq. (8) maps the left-hand half of the s-plane to t,_ inside of
the unit circle in the z-plane and the right-hand half of the s-plane to the ,mt;,..Je of the
unit circle in the z-plane. In the san" "nner as the spectrum of X*(s) as t:.r,,dicted by
Eq. (7) is periodic, so is the spectru_._ of Y*(s) periodic. Thus

a_

-- Y s +j _ (13)

Thisperi(xlicpropertyisan inherentcharacteristicofthesampliaqi:r,_:ess and must be
clearlyinterpretedinany numericalprocess. Basicallyitisreltw_ o thefamiliarun-
certaintyprinciple.Sincethereisuncertaintyinthetimefunctionbetweensamples,
thereisa correspondingambiguityinthefrequencydomain representation.

Allthismeans thatitisimpossibleina sensetocreateany digitalfilterwithan
arbitraryform ofcharacteristicatallfrequencies.Instead,theapproximationmust be
doneina "local"sensewiththeexpectationthatthegivenfrequencyfunctionwillrepeat
itselfatotherfrequenciesinitspresentsense. Thisdoes notmean thatthedigitalfilter
ismore limitedinitsutilitythantheanalogfilter.On thecontrary,a sufficientlyhigh
samplingratemay be chosenalongwithaccuratedigitaltoanalogconversioninsucha
manner as toessentiallyeliminatetheunwantedportionsofthespectrum. Furthermore,
complexfiltersmay be synthesizedquitereadilyon a digitalcomputerincaseswhere the
correspondinganalogfilterswouldbe verydifficulttobuild. L

HI. FILTER REALIZATION FROM TRANSFER FUNCTIONS

Itisnormallyadvantageoustostudytherealizationproblem beforeconsideringthe
approximationproblem,althoughan actualdesignusuallyproceedsinthereferseorder.

4
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It ca], be shown that any physically realizable linear numerical transfer ftmctton can
be written as the ratio of two polynomials in z-k of the form

N

Z" k

G(z) = Y(z) k-0 (14) ,
X(z) u

1 + _ bkZ °k t
For a stable system, the poles of G(z) must lie within the unit circle in the z-plane. !

!
A more intuitive form of Eq. (14) can be obtained by writing it in the form:

v(z) i + N z- = x(2) _ z-k (15)
k=l

The quantityz-koperatingon any F(z)corresponds:3delayingf(t)by kT sec. More
generally

,-'Iz"kF(z)l ffnT- kT) (16)

Performingthe inversez-transformationof Eq.(15)yields

M N

y(nT) , _ ,_,(nT-kT) _ ak x(nT-kT) (17)
k-I k:O

or

N M

y(nT) _ a x(,,iT-kT)- _ {)k ,(,,tT-kT) (18)
k--O k !

Thus, the transfer function of Eq. (14) is equivalent to the numerical operation of Eq. (18).
The reason for the unity term in Eq. (14) is now clear. A block diagram representing the
sequence of operations expressed by Eq. (18) is shown in Figure 4.

_ y(nTj
.... ".....x(nT)

Figure 4

5
i
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The form of synthesis (or programming) expressed by Eq. (18) is called a "direct
programming" scheme. There are a number of other techniques which are discussed in
the texts referenced earlier, along with the direct method, but they _dll not be discussed
here. It is felt that the direct method is the easiest technique to implement directly on
the computer, although some of the other techniques may yield fewer computer opera-
tions in some instances.

As an illustration of this method consider the transfer function given by

G(z) - 3z2 * 2z �S(19) "_
8z 2 �6z+ 1

The first step in realizing G(z) is to put it in the form of Eq. (14). Dividing numerator
and denominator by the value 8 and multiplying numerator and denominator by z-2 re-
sults in

3 1 z_ I +k-z -2

G(z)=- 8 4 8 (20)
3

z -1 +k z -2
4 8

Thus from Eq. (18),

y(nT) _-__3 x(nT) +--1 x(nT-T) + 5 (nT-2T)
8 4 8

3 y(nT-T)- 1
- _- _ YCnT - 2T) (21)

If desired, the notation may be modified to read

1 x(n-l) +85--x(n-2)y(n): 3 x(n)+-_

1

-3y(n - 1)-_y(n - 2) (22)

In subsequent work, the notation of Eq. (22) will be employed with the sampling time T
implied. A flow diagram for Eq. (22) is shown in Figure 5.

IV. ANALOG TO DIGITAL FILTER TRANSFORMATION a

Now that the basic form of the numerical transfer function has been stated, the next

questionis: How does one relatethe basic specificationsofa desired filteringoperation _.
tothe finaltransferfunctionto be realized? This problem, of course, isthe familiar

approximationproblem, and the solutionisevidentlynot unique. One possibleapproach
would be to attemptto approximate the transferfunctiondirectlyinterms ofa ratioof

I

6 +
I
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Figure .5

polynomials in z-1 (or equivalent e-_T). However, this approach appears to have re- i
ceived very little attention due to the difficulty of working with exponential functions.

On the other hand, there is a wealth of literature available on the approximation
problem of analog filters. If one can obtain some direct relationship between the analog
domain and the digital domain, the approximation problem can be carried out i-I the ana-
log domain, and then a suitable transformation may map the function into the digital
domain, thus achieving the desired result.

The most intuitive approach to this problem is _o find an analog transfer function
representing the desired response and then compute t_c z-transform corresponding to
this function. However, as pointed out by Steiglitz (6), (7) and Hauptschein (8), this
method yields rather poor results due to poor correspondence between a sampled-input
and a continuous input applied to the same structure. Consequently, this method will not
be pursued any further.

It appears that the use of the bilinear transformation is the most fruitful approach to
correlating the analog domain to the digital domain. The use of this transformation in
studying digital filters and control systems has been investigated by Johnson, Lindorff,
and Nording (9), Lewis (10), Carney (11), and all the references previously mentioned in
this paper (1-8).

The basic form of the bilinear transformation is given by
J

p=K (z-l) (23) ,
z+l

or the inverse transformation

K+p
• z =__ (24)

K-p

where K is a normalizing constant, i

i

7
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It can be shown that the left-hand half of the p-plane is mapped into the interior of the
unit circle in the z-plane; whereas, the right-hand half of the p-plane is mapped to the
outside of the unit circle in the z-plane. In other words, there is a similar correspond-
ence between the p-plane and z-plane as is true with the s-plane and z-plane. On the

i other hand the relationship between the p plane and z-plane is a simple ratio of first-
degree polynomials and is not complicated by exponentials, i

A

The basic procedure for using the p-plane approach is to carry out the basic approx-imation in the p-plane using the conventional analog approximation technique. Once the
' desired function of p has been obtained, one merely makes the substitution of Eq. (23) and
I manipulates the expression into the final desired form of a numerical transfer function.
I

Normally the approximation process is performed along the imaginary axis in the
s-plane. It can be shown that the imaginary axis of the artificial p-plane maps to the
imaginary axis of the s-plane, and thus the normal approximation will usually be per-
formed along the imaginary axis of the p-plane. An interesting point of consideration is
the relationship between the imaginary axes of the two planes. In this context, let

s = a + jw : transform variable of final interest (25)

=,r + j _, : transform variable in artificial p-plane (26)

since z : esT , from Eq. (23) we have

EsT 1
p _ K _- -- K tanh sT (2_)

_sT + 1 2

and

2 ps =- t_h-_ -- (28)
T K

For s : jw,p isimaginaryand thus

-- Z tan wTT (29)2

and

2 t an_ l _._ (30)
T K

The transformation between _ and w of Equations (29) and (30) is illustrated in Figure 6.
The periodic nature of the resulting transfer function can be deduced from the multivalued
nature of Eq. (30). Any form of response in _, will be repeated at certain multiples of the •
sampling rate along the axes.

Inany particularapproximationproblemtheconstantZ isdeterminedfrom either _.
Eq.(29)or (30)suchas tomap any particular_,tocorrespondtoany particularw. For
example,thegivenanalogfunctionofp mightbe normalizedfora cutofffrequencyof
1 rad/sec.Then fora desiredcutoffin% Eq. (29)issolvedforK. Thus_if_,risto
correspondtowr_ Z iSdeterminedfrom

8
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Figure 6

K = _" (31)
wr Ttan

2

The billnear transformation has been shown to possess another interesting feature
that will be considered in the next section. It will be shown that if the trapezoidal inte-
gration rule is used to approximate an analog system, the resulting numerical operation
will be identical with the bilinear transformation applied to the analog function. The
reader interested only in practical filter design may omit the next section without loss
of continuity.

V. RELATIONSHIP OF BILINEAR TRANSFORMATION TO
NUMERICAL INTEGRATION

In thi_ section, the following theorem will be developed and discussed:

Theorem

The bilinear transformation from the p-domain to the z-domain of the form

i

P_ 2 z- 1 (32)
T z+l

is equivalent to applying the trapezoids/integration rule to the set of n-simultaneous dif-
ferential equations that describe the corresponding analog system.

In order to prove this theorem a few techniques will first be discussed. The first is
the well-known trapezoidal rule of integration. Consider a single first-order equation of
the following form:

9
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dy dx 1
+ by = a t + a 0 x (33)

dt -_-

The best approximation in the first-order sense to Eq. (33) is achieved from the equation

Yn -Yn-1 b(yn +Yn-l) (Xn - Xn-l) (Xn + Xn-1)

- gl +go (34) '
T 2 T 2

where T is the sampling period. Eq. (34) is a general form of the trapezoidal rule for
the first-order linear differential equation. The solution for Yn proceed

or

now let
t

Y(p) = g [y(t)] (37)

X(p)=£ [x(t)] (38)

Y(z) = _ [y(n)] = _ [yn] (39)

X(z) = _ [x(n)] = _ [x] (40)

Assuming thatthesystem isinitiallyrelaxed,applicationoftheLaplacetransforma-
tiontoEq.(33)yields

pY(p)+bY(p)= aIp X(p)+ goX(p)

The transferfunctionG(p)iS

G(p) = Y(----P_)alP + go
X(p) p + b (41)

Withthesame initialassumption,applicationofthez-transformationto(35)yields

goT\.,7 "

10
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The transfer function H(z) is

H(z) - Y(z) 1-_ = (43)

The transformation between p and z can be determined by equating the righthand sides
of Equations (41) and (43). Thus

(, ) / -o_l

Aftersome manipulation,thefollowingresultisobtained:

p _ 2 z - I (45)
T z+l

which is clearly the bilinear transformation with K = 2/T. With this choice of K, the
relationship between x and w is

2 wT (46)=--tan --
T 2

For very low frequencies,

_w forw<<--_ (47) '
T

Thus_thetrapezoidalapproximationisseentoyieldan approximateone-to-onecor-
respondencebetweentheanalogdomainand thedigitaldomain forvery lowfrequencies.

The quantitiesH(z) and 6(p) are relatedby

H(z) = G ( 2 -z )(48)

as proposed.

11
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The theorem originally stated has thus been proved for the first order case. The
extension to the more general order can best be achieved by means of the state-variable
approach. The state variable formulation represents a system of order n by n first
order equations of the given form. It can be shown that one possible form for expressing
such a system can be achieved by the techniques to follow. )

It can be shown that a lumped, linear, time-invartant system can be described by a w
differential equation of the form.

d"'ly dnx dn°l x (49)ydn +bn. 1 + . . . boY-- an__._+an. I_ + . . . +aoX
dtn dtn-1 dtn dtn*1

which is equivalent to the transfer function

O(p)- e p"+ a.lp"'I+ .... + a° (50)
p"+b.._p"'l+ .... +bo

Let

dn'ly
yl =

dtn'1

dn'_Y (51)
Y2-

dtn-2

Yn - Y

The following constants are defined:

A,=a_

'%-1=".-,-b.-1_
I

(s2)
I

An.2 = an.2 - bn.1 An.1 - bn. 2 An [

f

12
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The system can then be described by the equations

=A dx
dYt +b-tYt _ b-2 Y2 + " " " 
H0 xdt ;-_-+

dY2 A dx (53)
d--t- - Yt -- 2 dt

dY---n- Yn-l = Adt n dt

Let

YI l
J.

!

Y: Y2 [ (54)
• !

Yn J |

b.- I b- 1 ..... b o

-I 0 ..... 0
|
!

0 -1 O. • • 0
[B]=- (55)

0 ....... 0-1 0

I I:lX= A2 Xo= (56)

A

Then, the set of equations of (53) are equivalent to

ey _ (57)d--_._ [s] y=X +Xox

, which places the entire system in matrix form in a manner analogous to that of the simple
first-order equation. The extension of the theorem can be done on the individual equaL_ns
as in (53) or on the matrix form in (57).

13
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VI. PRACIICAL "LOW-PASS" DIGITAL FILTER DESIGN

!
The problem of the practical design of low-pass digital filters will be considered in

this section. Strictly speaking, such a filter should actually be termed a pseudo-low-pass
filter due to its periodic nature as previously discussed. The form of a typical charac-
teristic is shown in Figure 7. Thus, if a true low-pass action is desired, the sampling
rate must be considerably higher than the "cutoff" frequency, and accurate dtgital-to-
avalog conversion z,_ust be employed.

AMPLITUDERESPONSE

..... ; I • ="
2/T 1,'T 3/2T 2/T

Figure7

Using the bilinear transformation, the technique for synthesizing a filter from the
transfer function can be summarized as follows:

1. Using the theory of the analog approximation problem, obtain a transfer function
for the low-pass filter of the desired form in the analog domain. In this context,
the ITT Handbook (12) contains respnnse curves for the Butterworth, Chebyshev,
and maximally flat-time delay filters, and the text by Welnberg (13) contains
normalized element values. Any of the other texts on network synthesis can be
employed in this task.

Thus, by some standard approximation method, a function of p, say G(p), is
obtained as a ratio of polynomial representing the desired response in the analog

domain. It is not necessary (or desirable) to denormalize G(p) at this point such
that the cutoff frequency in the analog domain has some unique correspondence
to the cutoff frequency in the digital domain. Rather it is simpler to develop a
normalized 6(p) such that p = j _ = j 1 is the reference frequency in the analog
domain. The total process of normalization results from step 2 to follow.

2. The second step is the determination of the normalization constant K. Assume
that some particular reference analog frequency, _ r, is to correspond to some
final real reference frequency wr. The quantity K is determined from the
relationship

K=x, cot ,,r___T (S8)2
£

3. With K known, the final transfer function H(z) is determined by substituting

#

p =K z-=! (S9)
z+1

14
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into 6(p). In other words

H(z) = G(pt (60)
k(z-1)

P= ( z +I'--"'_

; 4. The quantity H(z) is arranged in descending powers of z and synthesized accord-
ing to the technique of Sec. HI.

5o If a plot of the frequency response of the digital filter is desired, the transforma-
tion curve of Figure 8 can be used as will be discussed in the next. section. Notice
that the abscissa of the curve is the normalized quantity f/fT, where

fz = I_=half of sampling rate (61)
2T

3.6

toil w T

3.4_ 2

3.2_

3.0_

2.8_

2.6_

2.4_

2.2_

2.0_

!.6

L4

1.0_

0_

0.6_
i

0.4 !

o2

.. I I t
O0 OJ 0,2 03 (14 0.5 I" _ 0'.? 0.8 (19 !.0

f/fT

Figure 8
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VII. LOW PASS DESIGN EXAMPLES

Example 1° A second-order filter of the Butterworth or maxtmally-flat class will
be synthesized with the following specifications:

Sampling Frequency = f = 1/T = 2 kc

Cutoff Frequency = fc = 500 cps = 0.5 kc

The analog response for such a filter with Xc= 1 rad/sec is shown by Van Valkenburg
(14) to be

o(p)= (62)
p2+v2p �The constantX must now be determinedsuchthatx = 1 maps intow = 2-x 500 rad/sec.

Thus, frcm Eq. (58)

K cot S007 = ! (63)
2000

The desired transformation is

Z-1
p =_ (64)

z+l

which substituted into Eq. (62) yields

H(z) z2 + 2z + 1 (65)
(2 +,_) z2 + (2- cY)

This can be put in the proper form for programming by dividing numerator and denomi-
nator by (2 + ,'Y)z_ = 3.4142. Thus,

H(z) = 0.29289 (1 + 2z "I + z"2) (66)
I + 0.82841 z"2

The appropriate algorithm is

y_= 0.29289(x + 2x..I+ xn.2)- 0.82841Y.-2 (67)

A curve of the frequency response may be plotted by using the ITT Handbook curves and
the transformation curve of Figure 8. A number of points are tabulated in the following
table. The quantity O(db) represents the input-output attenuation in decibels obtained
from the curves, and the quantity G represents the magnitude of output to input. A plot
of several "cycles" of the response is shown in Figure 9. In this case the periodic
nature of the respor_e is quite apparent due to the low-ratio of sampling frequency to
cutoff frequency. *
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A .3 .4 .5 .6 .7 .8 .9 1.0 1.5 2 2._ -
G(db) .05 .11 .28 .54 .94 1.48 2.15 3 8 12 16 ,

G .968 .94 .897 .84 .78 .70"/ .395 .25 .I58 0
f/Ikc .3 .345 .39 .43 .47 .5 .633 .705 .76 1.0

Note: Table is accurateonlyto s|ide rule end curveaccuracy.

2nd Order Butterworth"Low-Pass"

1.0 fs * 21¢

09 fc = 0.51¢

0.8

0.7

06

0.5

0.4

03

02

0.1

0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0

f/Ik¢

Figure9

Example 2. As a more complex example, a fourth-order Chebyshev !liter will be
synthesized to meet the following specifications:

Pass-band Ripple = E = 1 db

f, =2kc

f = 200 cps = 0.2 kc

The "cutoff" frequency in this case is considered to be the last I db-down frequency.
For % = 1, the analog trazmfer function is

o(p)= . !, (es)
I + 2.6943 p + 5.2748 p2 p3 + 3.6280 i)4

The const,_t g is determined from Eq. 58 with _r = I and wr = 27, x 200

K = cot --q-" = cot 1o° : 3L0777 (69)
10
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The transformation is

p = 3.0777 z - 1 (70)
z+l

Substitution of Eq. (70) into Eq. (68) yields after a lengthy but straight-forward
computation

H(z) = 0.024717 (1 + 4z-I +6z-_ + 4z -3 + z"4) (71)
1 - 3.0543z -1 "2 - 2.2925z -s + 0.550742 -4

The associated algorithm is

y. = 0.024717 Ix �4xn_I + 6xa_ 2 �4x3 �x_4] + 3.0543 Y.-I

- 3.8290 Yn-2+ 2.2925 Y,-3 - 0.55v74 Yn-4 (72)

A table consisting of a few points of the frequency response is shown below, and a plot of
this response is shown in Figure 10.

x 0 .383 .707 .924 1 1.05 1.58 2.1 2.63

*3.0777 0 .124 .23 .3 .325 .341 .513 .883 .855

f/lkc 0 .08 .14 .18 .2 .21 .305 .38 .455 .5

G(db) 1 0 1 0 1 3 24 36 45

G .891 1 .891 1 .891 .707 .063 .016 .006 0

Note: Table is accurateonly to slide ru|e anclcurveaccuracy.

*Sincep = 3.0777 z - ] = 3.0777tanh_

= 3.0777tanwT or _ = tan wT
2 3.0777 2

VIII. BAND-PASS FILTER TRANSFORMATION

The techniques under consideration may be used to design a pseudo-band-pass filter
: of which a typical frequency response curve is sketched in Figure 11. As'in the low-pass

case, the response is periodic along the w-axis. The point that characterizes the band-
pass case is the fact that in the first "cycle," the pass-band occurs somewhere removed
from the lowest frequencies.

One way to approach the design of a band-pass filter is to first obtain the transfer
function of an analog band-pass filter and employ the method of the preceding two sec-
tions. However, this method may require a lengthy set of computations in the analog
domain, and the transformation in maintaining correct bandwidth is more difficult to
interpret. Rather a method will be developed that will yield directly a band-pass digital
filter from a low-pass analog prototype by means of an extension oi the basic bilinear
transformahon.

18
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1.0 4tn Order Chebyshev"Low-Pass"

= Idb

0.9 fs = 2 kc
I

fc = O.2kC
0.8

0.7

t_o| m

c t ..............I I
0 OJ 0,2 0.5 0,4 0,5

f/! kc

Figure ]0

AMPLITUDE RESPONSE

I I I i --
1/2T lIT 3121" 2IT

t

Figure ||

I
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., ....... _1_tt _,_ r

Assume then that a given low-pass prototype is known in the analog domain with
transfer function G(p)o It will be shown that the following transformation will yield a
pseudo-band-pass digital filter.

z-I a2(z+1)I (73)p:A -_+1 + _z'-l) J

The relationship between the w-axis and the _-axis is obtained by letting s = j w and p = j _.
The result is

k.=A [tanWf-a2c°t-2T]2 (75)

tan wT/2
Let x ............., (76)

a

Then Eq. 75 reduces to _=_A Ix-1 lx (77)

which is equivalent to the normalized low-pass to band-pass transformation of analog
filter theory. Sketches of Equations (75) and (76) are shown in Figure 12.

ax ml /i / ),/aA

/ /! , /ax2 ...... kr

aA ---

(a) (b) ",
!

Figure 12 i

.11

From Figure 12b, it can be observed that for a low-p_s reference frequency _r and
the corresponding negative frequency -_, there exists two values of x, xl, and x2 that
lie on either side of some "bend-center" %. Of course, % corresponds to d-c on the
.\-axis. "

2O
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i
It can be readily shown that

.o2: xl x2 (78)

From Figure 12a, it can be seen that the points %, xl, and x2 map to some band-pass
region on the w-axis. In addition, there are other band-pass regions as expected.

From Equations (78) and (76) the following relationship is easily derived:

' woT w1T w2T
,' • t_n2-: t_n.... t_n --- (79)i 2 2 2
I

I Letting _ = 0, and w= wo in Eq. (75) results in i:
!

Thus Eq. (79) reduces to I
!

WlT w2T a2 (81) I

i
IX. PRACTICAL "BAND-PASS" DIGITAL FILTER DESIGN t

t
As a prelude to explaining the steps in a band-pass filter design, it will be assumed

that the following parameters are specified:

lower "cutoff" frequency = w1

upper "cutoff" frequency = w2

bandwidth = w2 _wI

In some cases itmay be desirableto specifythe "center" frequency W0,althoughitis
more convenientto use the upper and lower frequency references,and thisisthe only
case thatwillbe considered. The design stepsfollow:

1. Obtainan analog low-pass transferfunctionofthe type desired inthe band-pass

ofthe digitalfilterfrom an appropriateapproximation technique. The most con-
venientchoiceof"cutoff'frequency inthe low-pass prototypeis _= I.

2. Determine the constantss2 and A from the relationships:

: t.n 2 2

b

^.... _r (83)
• w_T wiT
• ten-_- - tan 2

where _r isusuallythe reference low-pass "cutoff"frequency.
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3. The required transformation is

[ _- _ z:_£___+J!7 (84)P=A _+--1" (z-l) ..1

This expressionissubstitutedintoG(p)thusyieldingH(z).
!

4. The quantityl{(z)issynthesizedaccordingtothetechniquesofSec.HI.

5. If desi'_ed, the frequency response of the filter may be plotted with the aid of
Figure 13 and Figure 8 of Sec. VI°

3_

X- I/X
2

I

oi
-!

-2

"3

-4

-5

-6

-?

-8

-I0
0 0.2 0.4 0.6 0.8 1.0 1.2 L4 1.6 1.8 2.0 22 2.4 2.6 2.8

x

Figure 13

X. BAND PASS DESIGN EXAMPLE

As an illustrationofthedesignprocedure,a band-passfilterwillbe designedusing
thelow-passprototypeofExample 2 inSectionVII.The low-pas.sprototypewas a
Chebyshevfilterwith1 db rippleinthepassband anda normalizedcutofffrequencyof
= 1. Supposethefollowingband-passspecificationsare given:

f =2kc

f_ = 300cps = 0.3kc
¢

f2 = 400cps = 0.4kc

BW = 400- 300 = I00 cps= 0.Ikc

22 I
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i

The low-pass prototype is

G(p) = i • (85)
1 + 2.6943p + 5.2748p _ + 3.4568p s + 3.6280p 4

The constants a2 (along with a) and Aare determined from Equations (82) and (83)

as = tan.157,tan.2

I

= tan 27° tan 36°
(86)

= 0.50953 × 0.72654

= 0.37019

a =0.6084 (8_)

A : 1 1 (88)
tan 36 ° - tan 27 ° 0.72654 - 0.509._3

: 4.6081

_ The required transformation is

. which may be inserted into Eq. (85) to yield H(z), the desired transfer function. The
=-.. procedure is stralghtforwar_ but the computations are rather lengthy and messy for
_ this case. Consequently, the actual synthesis will not be carried to completion for this

case. As a final exercise f >r this example, the frequency response will be plotted. Fig-
ures 8 and 13 and the low-pass tabulated data may be used in this context. Consider the
normalized forms of Equations (76) and (77) which are repeated

(,0,
where x = tanwT/2 (91)

8

These equations are further written as

1
--= x --- (92)aA x

• and ax = tan wT/2 (93)

_; 23
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Thus the vertical axis of Figure 13 is interpreted as _/aA and the vertical scale of Fig-
ure 8 is interpreted as ax. The quantity aA is numerically equal to 2.804. Hence,

....... x --- (94)2.804 x

and 0.5084x = tan wT/2 (95) :

The resultsare tabulatedbelow,and a plotis shown in Figure 14.

), 0 .383 .707 .924 t 1.05 1.58 2.1 2.63

G .891 1 .891 1 .891 .707 .603 .016 .005 0

/2.8 0 .137 .252 .33 .357 .375 .564 .75 .94

Xa 1 .935 .88 .84 .835 .83 .755 .7 .64 0

X_ 1.08 1.14 1.19 1.2 1.215 1.32 1.445 1.62 1.44 1

.608 X .60_; .568 .535 .511 .507 .504 .459 .425 .389 0

.608 Xb .657 .693 .723 .73 .739 .802 .876 .973

f,/1 kc .35 .33 .313 .3 .299 .298 .275 .255 .233 0

fJ1 kc .369 .387 .4 .401 .402 .431 .458 .492 1

Note: Ta_)leis accurateonlyto slide-ruleandcurveaccuracy.

8thOrderChebyshev"BandPass=

1.0- _ =ldb _A A_

IVV lfs -2kc
0.9 -- fcl =0.3 kc

fc2 =0,4 kC
0.8--

0.7--

0.6--

0.5--

0.4 --"

0.3

0.2 i *

0.;

0,1 0,2 0,3 0.4 0,5
f/Ikc

•Figure]4
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XI. SUMMARY

Digital Filters provide a means for altering the spectral representation of sampled
data in the same manner as RLC filters do for continuous analog data. Furthermore,
the versatility of the computer allows the filter characteristic to be quickly changed to
conform to rapidly changing characteristics of telemetry data.

In a sense all digital filters have periodic frequency response characteristics. Hoxr-
ever, if the sampling rate is chosen sufficiently high and if accurate digit,- _,to-analog
conversion is employed, the periodic effect of the response may be removed.

The procedures presented in this paper depend on the bilinear transformation to
map an analog domain response into the digital domain. The approximation problem is
first performed in the analog domain using conventional network synthesis tables, and
then this response is mapped into the digital domain. The use of the z-transform results
in a numerical algorithm that can be easily programmed on a computer.
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I. INTRODUCTION

Tracking of satellites and stars with optical devices requires that these devices he
precisely pointed in space. A system for obtaining a high degree of pointing accuracy is
currently being developed at the Goddard Space Flight Center by the Automatic Control
Group of the Antenna Systems Branch. Called the "multl-mode mount," it consists of a
two glmbal structure capable of positioning optical equipment weighing 3,500 pounds and
having maximum dimensions of 14 feet in length and three feet in diameter. The angles
of the gimbals' axes correspond to X and Y position coordinates of the object being
tracked. The specified position accuracy is 0.0001 degrees in both coordinates, and the
system is required to move smoothly at rates from 0.001 degrees per second to 5 degrees
per second in order to track stars as well as low altitude satellites.

_: The control system for the multi-mode mount is to be a hybrid (digttal-analog) type
=_'_ consisting of a "tight" inner rate loop and a relatively "loose" outer position loop. This

same scheme is applied independently to both the X and Y axes. A functional block dia-
.: gram for the X axis control system is shown in Figure 1. Digital position and rate feed-
_.. back signals are obtained from digital encoders located on the axes of the gimbals. These

encoders provide position information accurate to within ,0.001 degree. Analog rate
signals are also available from dc tachometer generators mounted on the axes.

Though both loops operate on digital signals, the equivalent sampling rate of the inner
loop under most operating conditions is high enough to assume that the signals are analog.

I
l#(t)

(_ote Multiplier) _ ]ANALOG- J

Figure1-SystemFunctionolBlockDiagram
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This is not true, however, in the ca the outer loop. Thus, a continuous signal _.n,gJysis
is applicable to the design of the inner loop, but discrete signal analysis must be applied
to ti_e outer loop. Quantization effects were not included in the initial analysis. Errors
due to :,uantization should bc small since quantization is in steps of 0.0001 degree.

The study performed by this author relates to system input requirements _i_the pro-
gram mode oi operation, analysis of experimental results obtained in the rate mode of
operation, and compensation requirements for the rate loop. In the prot,.'am mode, the
intzlt is to the position loop and consists of a digital signal corresponding to the sampled
and held value of the satellite's position T seconds in the future. Sampling is t>-_rformed b
once every T seconds. The present mount position is subtracted from this signal, and
the difference is sampled and held far T seconds. A rate signal generated on the basis of
the sampled difference drives the rate loop at a rate required to reduce the difference to
zero in T seconds. The rate signal is constant over the T second interval In the rate
mode, the position loop is open and a command rate signal is applied directly to the rate
loop. Experimental results referred to for this mode of operation were limit cycles of
unacceptably large amplitude which occurred when driving the system at low rates.

The analysis of the system input requirements in the program mode showed that in
the case of a satellite with a 100-mile orbit on a worst case (horizon) pass, the sampling
period, T, must be less than 0.282 second to obtain errors less than 0.001 degrees. An
alternative solution is proposed in which the input to the position loop is derived from the
satellite's present position, velocity, and acceleration. With this input a ,_ampling period
of one second would be sufficient to maintain 0.001 degree accuracy.

From an analysis of the experimental results, it was determined that the most likely
cause of the undesired limit cycles is the stick-slip phenomena associated with bearing
static friction. To eliminate this problem, the damping of the rate loop must be increased.
This in b_rn requires a reduction of the rate loop bandwidth and a concomitant decrease
in response time. A design was suggested in which a feedforward path in the rate loop is
used to maintain required response time while allow'.ng a rectuction of loo_ ban_'vidth and
au increase in loop damping.

This report is divided into four sections exclusive of I_ttroducUon and Conclusions.
Section II deaJs with pulse models of the system to which z transform analysis may be
applied. In Section HI, requirements for the reference input are ;ilscussed. An analysis
of experimental results is given in Section IV, and some design suggestions are included
in Section V.

II. SIMPLIFIED MODEL FOR DISCRETE TIME ANALYSIS

In order to arrive at a mathematically tractable pulse model for the system, some
simplifying assumptions must t_emade. First the quantizing effect due to the D/A con-
verter in the digital tach loop is neglected. Since the quanttzation level is quite small,
this should not lead to serious errors. Next, the digital tach loop transfer function is
assumed to be simply I/s. This assumption neglects dynamics which should have a short
transient relative to the sampling period T. On this basis the pulse model in Figure 2
applies.

In the figure, H and G are the Laplace transforms of the hold and digital tach loop
respectively, T is the sampling period, t_ is the command rate, i.e., the output of the
rate multiplier, and R(s) is the reference input which is discussed in detail in Section HI.
The actual dynamics and design of the digital tach loop axe considered in Sec_.i.m V.

28
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I_ HG(z) _ I

0,,, T

Digital
\" V' / TOch

Zero Order Hold Lo(,p

Figure2-Pulse Modelfor SimplifiedSystem

_Ihe basis for the z transform analysis to be applied to the pulse model may be found
in many texts. Several are listed as References 1 and 2. The analysis is as follows:

Let the integration of the zero order' hold be combined with the integration represent-
ing the digital tach loop to form a single transfer function G1 which is

_::- G1(s) =± G(s) =_ (1).._-. s
Z

In this way, the problem of finding HG(z) is reduced to finding the = transform of G1(s).
This is

Z Gt (s) (z-l) 2

Use of (2) allows HG(z) to be determined as

K(_-1). Tz KT (3)
HG(z) =- z _ : z-I

The closed loop pulse transfer function relating 6 (z) and R (z) is found to be

U (z) _ HG (z) _ ET (4)
R(z) 1 +HG(z) z- 1 tKT

,_ For KT = i,(4)becomes

:±; (_T=1) (5) ,:
R(z) z

It is necessary to consider _e nature of the reference input, r (t), to determine
whether or not t: "_closed loop pulse transfer function given by (5) is desirable. The ref-
erence input pres_ntl_ used is

29

¥

1966021864-033



r(t) : 0 r (nT+T) ; nT =< t =< nT+T (6)

I
t

io |

where .., (t) is the computed value of present satellite position.

Since the reference inputused is the satellite position one sample period in advance
of present time, the following z transform relationship holds

z (o (7)

If (7) is combined with (5) the result is

e (_,) : 1 (8)
0 (z)

I

I

where a, (z) is the z transform of a t (t),

I
[ A_cording to (8), (5) is a desirable transfer function since with the r (t) used, it re-

sults in the outp-t being identically equal to the computed satellite position at least atthe sampling instants.

[ The above analysis is only approximate since the digital loop transfer function is not[

a pure integrator as assumed. It is well to investigate the situation when a better approxi-
mation to the digital tach loop transfer function is used. Toward this end, let G(s) be

! given by

G(s)-- s -_ �¬�(9)

Then Gt(.',)is

GI(s)--Is2(-_I+I)_I-x (10)

and the z transform of Cx(s) becomes, I

gl (T) z (z -/31) (z-_2)
G1(z) (11)

? (z - I) 2 (z - al)':'

where _x=e-'_r ,P_ and l_._aresolutionsof

2(2alaxT+a12-1)/3_at--0

and

T(1 -,t)2
gt(T)=

(I"_t)(Z-#2)
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The values of _1 and _2 may be found from curves on page 79 of Reference 1.

The solution for HG(z) in the case becomes

KgI (T) (z -_1) (z -82)
HG(z) : (12)

(z - 1) (z -_1) 2

The closed loop pulse transfer function corresponding to (12) is

KgI (T) (z -_1) (z -82) (13)
B(z) = (z - 1) (z -ctl)2 I (T) (z -/.31) (z -/32)

Making use of (7) in (13) gives

e KgI (T)z (z -81) (z -_2) (14)(z) -
• (z-l) (z-_p 2 +Kg_(T) (z-_p (z-_ 2)

The design parameters available Jn (14) are K, T, and a z. If the desired response
cannot be obtained through selection of these parameters, then digital compensation must
be added. This may be done either within the position loop or before it in the form of a

_-_- prefilter.

HI. REQUIREMENTS FOR THE REFERENCE INPUT

In order for e(t) to track 8 (t) within a few seconds of arc, the reference input
r (t) must meet ce "rtain requirements. It is the purpose of this section to determine wlmt
these requirements are.

: The system is represented in simplifed form in Figure 3.

The command rate be is generated from y (t) and is constant over period T. For the
purpose of. deter.mining requirements on the reference input, assume that the loop L_ is
such that 8 (t) _ 0e , i.e., it follows the command rate exactly.

8

H0 L[., MULT, COMPENSATION -_+

Figure3-Simpllf.ed FunctionalDiagram
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The command rate, and thus $, during tb_ n th sampling period is given by

, (t) :_c (t) - y(nT) _ r (nT) - _ (nT) . nT < t -<-(n + 1)T (15)T T ' -

I
I

If the reference input is given by

[ r (t) = _r (nT + T); nT < t -_ (n * 1)T (16)
[

then an equivalent rep_csentation for the system input is as shown in Figure 4.

O(t)

+

8r (nT+T) - Br(nT)

Figure4-Equivalent Representationfor SystemInput

This representation is derived through use of the relationship

y(t) = 0r (nT+T) - 0(t) = 8r (nT +T) - 8 r (n_) + 0r (nT) - O(t) (17)

Substitution of (17) into (15) gives

b(t) 0 (nT+T) - 8 (nT) Or (nT) - O(nT) (18): T _ T

The first term on the right side of (18) is an approximation to _ (t), while the second
is an additional component of velocity to correct for the error e (nT) existing at the be-
ginning of the n th interval. Since the first term is only an approximation to _,'(t), then
the ultimate error will depend on the accuracy of this approximation. In order to dem-
onstrate this, consider an interval for which

e (nT) = 8r (nT) - 8 (nT) = 0 (19)

I

Then integration of (18) for the interval of interest gives
i

e<t>e<.T>+ ¢20) • iT

for 0 ___ =< T where • = t - nT
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I

Thus, during this interval,

, e (t) : 0 t (t) - 0 (t)
I
I

. : [ot(_T+T)-ot(_T)]-+O,(t) (2Z)T

where v" (t) = et (t) - ot (nT)

It is clear from (2 I) that

e (nT +T) : 0 (22)
Q

since by definition

_' (nT+T)=O (nT+T)-O (nT)t t t

The maximum error occurring during the interval is at t = t z for which

dt/ -tl =0"

Time tz. is found.from the solution of the equation ....
t.

dt T

In general

"
O'(t) = _) dr; nT<t= <(n+l)T=r r

T

Let bt be given by

b (_.)=a+b_ ..(25).

where a and b are the satellite velocity and acceleration evaluated at t = nt. Use of
(23), "(24), and (25) gives

dO t (t) A

=,, +b.,-=-T .. _., (_s),
I ," [

where A =.Q_(aT+T) - 6T (.nT) ,. .,, , .:... , , . ,_ .. : ,
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, 1

Thus, the time at which the maximum error occurs is found from (26) to be

1

and since A = aT +.(bT2)/2, this is

z (2s) ,,7-1 _--_2
II

The maximum error is

(.__) bT 2= =-T (29)

For a satellite in a 100-mile orbit, b may be as large as 0.1 degree per second =.
In this case then, e=.x = .0125 ° at T/2 = 0.5 if T is one second. Under the best ciro
cumstances, then, this is the ultimate attainable accuracy if r(t) is chosen as in (16)
and T = 1 second is used. Reducing T to 0.5 seconds decreases %=x to .003125 °. In
order to maintain Jeuxl < .001 degree, T must be less than 0.282 seconds.

There is a problem in trying to reduce the error by simply decreasing T. This is
that the approximation that b = be will be less valid over an interval as T decreases. A
possible way to decrease the error while maintaining T = 1 second is now considered.

Since the error results from the fact that th£ command velocit_ differs from true
satellite velocity over an interval, a way must be found to bring the two into closer
agreement. One possible way for doing this is to generate the command rate from a
function of the sateUite's present position, velocity and acceleration. The reference input
required for accomplishing this is

r(_r)= br(nT)+ _;r(nT)+ 0r(nT) (30)

for 0 < T < T, where _ = t - nT. The command velocitywould then be generatedac-
cordingtotheequation

+)c(.r.) OCn'15- OCn'D= T + b CnT) + _rCnT)+ 01)

An alternative method for obtaining the same result indicated above is possible even
if velocity and acceleration signals are not available. This is to generate the command
rate according to the equation

bc(_r)_ y(nTT- T) + 2 [y(nT)-T_yCnT- T)] _- (32)

where y isdefinedas inFigure3. Inthiscasethereferenceinputtobe usedisthat
givenby (16). .

u

Eitherofthesetwo approachesshouldgiveerrorslessthan.001degreeswithoutre-
quirin."samplingperiodslessthanone second.
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IV. ANALYSIS OF EXPERI_AENTAL RESULTS

Experiments on the multi-mode mount revealed the existence of limit cycles while
driving the system at low rates. The cause of this phenomena is most likely the bearing
friction. A detailed exposition of limit cycles of this type may be found in Reference 3.
A brief discussion is given below to explain their occurrence in this system.

The analogue tach Joop is shown in Figure 5a. The nature of the bearing friction,
fs(8), though not known exactly, is probably as shown in Figure 5b. This characteristic
is simplified in that hysteresis effects are neglected. Though it would be necessary to
include hysteresis effects to obtain an accurate quantitative description for different
drive rates, the simplified representation of bearing friction is adequate to explain the
presence of the limit cycles.

Consider the input to be a constant velocity, 8i • A describing function can be derived 1
for the bearing friction about fso, where ]

%0: f( i) (33)

This describing function defines an equivalent gain for .re as a function of A_. It is
developed by assuming a sinusoidaI variation of velocity, (As) sin wt, and calculating
the fundamental component in the output waveform which will vary between f. and f-2 -
Note that it will be a function of gi as well as Ag. Let this describing function be

(34) i
{

Withthisdefinition,theeffectsofbearingfrictioncanbe introducedintothesystem block
diagram as shown in Figure 6.

It is important to note that the effect of the feedback of g through N is destabilizing,
i.e., an increase in b causes a decrease in retarding torque. This is in contrast to
feedback through O and _r, which is stabilizing.

The transfer function relating _ to b_ is

k1 K

@(st 1 + k1 KKT: (35)
0/s) % _' % + T'

e s2 + s.l
1 +kl KK T 1 +kl KK T

where k_ = I/(V-N)and _ = (%7 [(D/D-N)].

Sincek and _: are dependenton N,Itisclearthatthistransferfunctioncan change
' conslderabl_with ;_. For example,from (35) itisseen that

D -N �KKT
-_ (36)

' _%= -,-,T D

I

!
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and
t

¢o '1 1 1
=_- [te(D -N) D_m] -N _ KKT) (_e_'mD) (37) ]

t

• t• Thus, the natural frequency, ,_, decreases for increasing N. The damping ratio may
increase or decrease depending on _elative magnitudes of other system parameters com-
pared to N.

The gain of the transfer function given by (35) is

klK K

_k_X,- V- N+KX_ (38)

t This gain increases for increasing N. Thus, the combination of increasing gain arid de-
creasing natural frequency can lead to conditions reqtflred to sustain a limit cycle in the
closed digital tach loop which has the open loop transfer function

37
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One limit cycle frequency which occurred in the experiments was 5 cps when driving
at 0.1 degree per second. It can be seen from a Bode plot of L_fs) (Figure 7) that the
complex conjugate poles of ,; '_i(s) could move to a position to give 180 ° phase shift and
0 db gain at 5 cps.

When driving at 0.04 degree pvr second, the resulting limit cycle was not stnusoidaL

To quantitatively account for this case, hysteresis and the exact form of fs(tJ) would
have to be taken into account.

V. DESIGN SUGGESTIONS

The limit cycles occurring at low drive rates may be substantially reduced or elim-
hated if the response of the tach loop is made overdamped. This fact is noted in Refer-
ences 3 and 4. Reference 4 deals with nonlinear compensation schemes intended to
overcome this type of limit cycle. The design discussed herein does not use this approach
since it would require extensive modification of existing equipment. Instead, the design
suggested herein for the digital tach loop requires only linear compensating elements,
and requires only a minimum of modification to existing equipment.

TO0 ............

%_ ,2co.es.I)=(a3o)
t.,cs).st¢3s;,_¢_.2_s,-a3o)

8O

60

X
40 ," ....X ............ _

- \.-= 20 .......

- 0 "J'J' J'

-P.O ........ •

i

-40 _ i,

O_Ol 0.! I.O lO.O tOO/) =
(o

Figure 7-Bode Diogram for L 1(s)
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The design philosophy will be considered before discussing details. This philosophy
is to relieve the digital tach loop of the entire burden of meeting steady state accuracies
to stnusotdal inputs for "worst case" satellite passes. This is accomplished by using a
feedforward path as shown in Figure 8. With this arrangement, the accuracies mentioned
above can be obtained with much lower digital tach loop bandwidth than is presently used.

Feedforwordpoth1

t

+ K¢ (|+rS} i/K T
ft. $

t_.

Counter _ ___.__.___
Compensotion AnalogTochLoop

Digitaltoch

l .,

Figure 8-Feedferword Compensation

Ln Figure 8, _;c is the command rate into the digital tach loop (shown in Figure 3), ;
and it is assumed that the closed analog tach loop has the transfer function,

_-(s_ _-ls-_KT (40'

i.e., the analog tach loop gatn is high enough so that the complex conjugate poles result-
ing from motor and electrical time constants are of high enough frequency to be neglected.
More will be said on this point below when details of the design of the analog tach loop
are discussed.

The transfer function relating _ to _ is

K!
• 1 + _r._ _ S2

_c _ s 2 _ rs_I

This transfer function can be made identically equal to one by choosing

Kf: XT

3g

!
!
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To implement this feeaforward loop, an additional D/A converter is required to con-
vert _J to an alalog sigu_l. Note that _ is available in digital form as (y(nTD/T (see
Figure 3) before it is converted to pulses by the rate muRiplier.

An important consideration in this design is the saturation level of the power ampli-
fier. It should be noted that if Kr = Kf = 0.715 volts/deg/sec., then an incremental in-
crease &,'_ equal to .05 degrees per second, which corresponds to the largest expected
value for a 100-mile orbit satellite, will produce an incremental step voltage of 35.75
millivolts into the closed analog tach loop. This must be borne in mind when designing
the analog loop.

Figure 9 shows a Bode Diagram for the open loop dig#:al tach loop transfer function.
It includes the double break at % = 40 which represents the natural frequency of the
closed analog tach loop. This part of the transfer function was not included in Figure 8.
Values which pertain to Figure 9 are:

KT: O.71S

_-- I0

K = 0.645

= 0.477

If the poles at ,, are neglected, the characteristic equation of the closed digital
tach loop is given by_

S 2 t 4.3S + 9 (43)

80

9 ( ! + 0.477S)
L(S)- S_t__ + 0_ S+,)

60 " I I,,i "40 .. [ I
i I

i zo ...............
,,J

0 ..... _

-20 ...... "_ -_ _ • ".-40
O.O! O.t t.O tOO I00.0

_igure 9-Bode Diogrom for Digitol Took Loop
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Though not m,derdamped, this loop has a damping ratio of 0.715, which will produce very
small overshoots. This damping should be adequate to avoid limit cycles at low drive
rates. In this regard, the feedforward compensation appears to have the following ad-
vantages. The command rate, gc, is applied, tin _ugh gf, immediately to the input of the
analog tach loop. Even for low drive rates, this results in a signal which is adequate to
oyez come bearing friction. Thus, the mount begins to move immediately rather than
having to wait for adequate signal level to develop in the counter as it must if feed forward
compensation is not used.

Attention is now directed to the design of the analog tach loop. One of the difficulties
associated with design of this loop is that problems may arise if the load inertia, J,
varies during operation. To put these remarks on a quantitative basis, the closed analog
loop transfer function is given by

KK

_b v ��¤�(44)
V /_ D s2 D

where v is applied voltage, K amplifier gain, K motor torque constant (Ib-ft/vol0, D
axis damping (lb-ft/deg/sec), % motor time constant, % electrical time constant, and
KT tach constant (volts/deg/sec_. For T = 11.8, % = .035, K = 6.25, D = 895, and

• KT = 0.715, the amplifier gain required can be calculated from

D _ K K Kr (45)_L_: 1600 :
D_e

Thus,

Ks .=1600 (8.95) (,035) (11.8) -8.95(6.25)(.715)

: 1325

With this value of amplifier gain, the power amplifier saturates for inputs of 56/1325 =
42.3 millivolts. Since this is greater than the incremental input of 35.75 my occurring
for "worst case" passes, the power amplifier should normally operate in the linear
region without saturating, i

If T = 11.8 is the largest value occurring during operation, and load inertia changes

are nnt too rapid, then _ : 40, hence the double break at _ in Figure 9 should always i
be s_ffficiently far removed from the 0 db crossover frequency to be negligible.

4
A pulse model suitable for Z transform analysis of the system was developed. It !

shows that system operation is exactly as desired when secondary effects are neglected. ]
The analysis of reference input requirements showed that in order to satisfy error re- Jqu_rements, inputs must be applied at least once every ._82 seconds or, alternatively,
rate and acceleration inputs must be used. Bearing friction was revealed as the most I
likely cause of the limit cycles observed while operating in the rate mode. A desi_._ wa_ ]
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presented which should overcome these limit cycles. It was based on increasing the
digital tach loop damping, lowering its bandwidth and incorporating a feedforward path.

This design requires only minimum modification of existing equipment. __
_v v_
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! ABSTRACT
I
[

I Gain and noise considerations make it desirable to increase the
[ frequency of operation of satellites. This increase in frequency places

t more stringent requirements on the accuracy of tracking systems.

I The object of this study is to find the limitations of the 85-footantenna tracking system at Rosman, North Carolina, and to suggest
some possible modifications to the system in order to meet a specified
accuracy of 0.01 degree. This accuracy which corresponds approxi-

mately to a system frequency of 8,000 Mc _nould als_ _..- attained forlow altitude satellites.

In the absence of the exact transfer function for the system under
consideration, a linear system was assumed. Although the model does
not exactly represent the actual system, some insight as to the quan-
titative values of errors was gained from its use.

The error caused by satellite motion was calculated. It was found
that this error is not negligible for low altitude (100 miles) satellites.
A reduction of this error by a change in gain is not attainable without

_*o causing additional problems. This is due to the low resonant frequency
of the antenna dish and the consideration of possible nonlinearities in
the system.

A signal adaptive technique is proposed to reduce the tracking
error. This method introduces a computer computed function at the
system's input. However, this requires an accurate knowledge of
satellite velocity and position.

The effects of wind torques and noise disturbances were also con- i
? stdered. The mean square error due to wind torques and noise were i

determined. It was found that in the presence of wind and present sys-
tem does not satisfy the accuracy requirement it should ultimately

_ possess. Compensation schemes were used and a way was found to
improve system performance of application of proportional feedback.

As the effect of noise in the system error is dependent on the
magnitude of the noise spectrum, a limit may b_ _et in order to satisfy
_l_erequired accuracy.

• It is also shown that an adaptive system could reduce the error due
to the noise.
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BLOCK DIAGRAM AND TRANSFER FUNCTION OF
SERVO DRIVE AND DISH

As the first problem encountered is the determination of tracking accuracy for the

present system, its transfer function must be obtained. Unfortunately at the present time !

the exact system transfer function is unknown and some approximations must be made in i
order to describe the system. The structure of the dish, for instance, is quite compli- ._
cated and the search for its transfer function presents, in itself, a sizeable task; however, !
it can be a_-gued that a simplified version of the actual system function may throw much 1
light upon the quantitative values of the errors in tracking. !

Figure 1 shows the block diagram of the assumed system used for this study, i
J

|

GI G2 G4 1

S(I+STa) Sz---_,+ ZS_S+ 1(_+ST_' + +l_..!..._, _ _
|

1

........................ . {

1
Figure 1 |

!

i.
!
i

A more detailed block diagram of the hydraulic system is given in Figure _.. The i

transfer functions G2 and (is may be combined yielding 1

G 5 -

KsS(aSs +bS = + cS +1) t
I

Assuming the roots of the third degree polynomial in the denominator of Gs to be away
from the natural frequency W2 of the dish, the block diaKram is simplified further. Also,
in order to introduce wind torque disturbances into the system, a block is added resulting
in the block diagram of Figure 3.

l

: The simplified transfer function for the system as obtained from Figure 3 is then

L

I) oL K(1, ST,)

I T: "s,_i+sT,_(s'/_.+2_,':,s +_
i
1
i

,, 44
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[

;, Figure2-Hydraulic SystemBlock Diagram

%

Y

• i

Ul i1|1 ii i i ii

Figure 3
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where, for the X-axis

T 1 = 0.687 sec

T2 = 0.167 sec

W = 13.8 rad/sec

; z = 4.84

I o=0.1

; thus
[

G(S) = 4.84 (I �0.667S_

i ]$2(1 + 0.167S) _ �0.0145S+ 1

(13.8) 2

The open and closed loop magnitude plots are shown in Figure 4. From these plots, it is
seen that an overshoot of forty percent is possible if the input to the system is a step
function. Although this is quite a high value, it may not be of importance as the antenna
in the tracking mode may not be ever subjected to such an input.

-40 -- -- -270 o

"_ -80 o'o/DEC

Figure 4-System Transfer Functio.
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ERROR CAUSED BY SATELLITE MOTION

This error is a function of satellite orbit and antenna position with respect to the
satellite. Larger errors are present when tracking low altitude satellites than high
altitude ones. Also, if the antenna is tracking two satellites of the same orbit height, the
antenna error varies depending on the position of the orbit with respect to the antenna.
For an X-Y antenna, this error would be the largest on a horizontal passing rather than
an overhead passing as is the case for an azimuth elevation antenna. (See also the attached
computed position, velocity, and acceleration of the anterma output.)

a

Two methods may be used to evaluate the error and the antenna's capabilities. The
sinusoidal method which is suitable for design purposes assumes the variation of position,
velocity and acceleration of the antenna to be sine waves superimposed to the actual com-
puted curves. From this sine wave the corresponding position is computed and as the ac-
ceptable error is also known, the value o/E may be calculated. One numerically computed
value corresponding to the 100-mile satellite is shown t _. Also Figure 5 shows how
the sine wave is superimposed. This calculation is for a:_ ¢.rror of 0.01 degree.

'1 f I II..... ..............
•. 2_ s 401_ o.

o \...... /

.?, _ _\ ./r / ,
_'_ . .,, & !//

I
I

-40 10 20 30 40 50 50 70 80

TIME/s_ !
I

Position Curve i
J

T :. 160 sec ._

W-- 2 t-- .- 0.0392 !

160 !
64

l e/ :--.-. 1.11 red
_' 57.5 !

' C_ 1.1 × 104:0.64x 104
E 1.74

- C
• --= 77.4

E
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VelocityCurve

T --80 sec

W = 0.078

1.5 = 19.3° =0.336red
_" = 0.078

C 0.336
- x 104 =19.2× 102

g 1.74
q

C
--= 65.5db
E

Acceleration Curve t

T : 48 sec

W= m2 : 0.13 |
48

0.093
_,. -̂ x 5.5° = 0.0955 tad

(0.13) 2

, C 0.0955_= x 104 = 5.45 x 102
E 1.75

--= 54.5 db
i : E

r' With this method we plot the open loop transfer function of the system for a given 1
, error. The actual transfer function should have a larger gain if a lower error is re- |

quired. Figure 6 is the open loop plot of the control system. It shows that with the 1
present system the error for a 100-mile satellite is larger than 0.01 degree. For a 600- ]

. mile satellite the error is less. Also, it is shown that for a 100-mile satellite the error ]
, is "about two minutes. J

In Figure ? an attempt is made to reduce the error by the change of open loop char-
acteristic. The result is not good because of the following facts. A-60 db/dec _lope
should not be permitted because any nonlinearity could subject the antenna to violent os-
cillations. Also the crossover frequency comes closer to the resonant frequency and
consequently makes the settling time very long. The addition of zeros near the complex
poles was tried in order to overcome this difficulty. This was not successful as the
maximum gain for stable behavior was below the one obtained from Figure 6. Figure 8
is an example of this attempt for

.'t

C K(S + 1.5) (I _385S + 200S2)
,. E S(S2 _ 3S , 220) (0.07 + S) (S2 t 20S�400)

It should be b_rne in mind that the assumed transfer function, from which the open
loop plot was obtained, might not represent the system accurately. For this reason the
actual error could well be more or less than the calculated values. It is hoped that ex-
perimental field data from the present system will result in an accurate system function
description thus eliminating the uncertainty in the calculated values. ""

One possible method of tracking error correction would be the use of an adaptive
signal according to the following: If a simple loop as shown in Figure 9a is considered,
one may write

48
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i

K=t20

Figure 8

, Gt ,,

1=1 (b)

Figure 9

C GI

R I +G l

Now consideringFigure9b:
q

G,
c_(R, c62_l TG,

1+=,/=1-_,
C Gj

R I +G s -GIG 2
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: If one wants CJR = 1, one should have

G_ 1

I+G I-G zG2 =1 or G2:G--_

This means that if one could inject the error as a function of time into the system,
this basic idea may be applied to the system. However, there could be one practicai
drawback: tile calcuIated error must be more accurate than the error desired. The set
of curves attached to this report shows the position, velocity, and acceleration of "he i
antenna. From these curves it is possible to calculate the error. However, iz: order to i

obtain these curves one must know not only the speed of the target but also its position, i
If these curves are not known accurately, even with an accurately known transfer func- ]
lion, the error may not be accurately calculated. If this method is to be used, then the l
correction should be done step by step. As at low frequency operation, a larger error
can be tolerated at each run and a higher frequency and a better correction may be intre= 1duced for each satellite.

!
EFFECT OF WIND IN THE MSE OF THE SYSTEM

In abse,_ee of the exact transfer t_nction for the system under consideration, the
analytical model of Figure 3 was used. It was then established that the output angle and
wind torque are related by the t. _sfer function !

2.4 _ 10°_ (1 _ 0.167s)_-
0.167S 3 + S 2 + 3.22S * 4.84

in the absence of an input signal.

The mean square error of the system is then determined from the relation

_-2 _ I "t )_
a,,"-j"j_ (;(s)6(- s) %.(s) dsj_

where ),.(S) is the power density spectrum of the wind torque. ( For our particular study
the spectrum given in page 259 of reference 1 is used, i.e.,

o(_) - ij2 v
_2 -- 82

where

v = frequency in rad/sec

¢. is the constant of proportionality relating the wind torque to :he square
of the wind velocity.

51
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vo = average wind velocity
lg

v_ = RMS value of wind velocity fluctuation about the average velocity

The range of frequencies of importance here is between 0.4 and 3 rad/eec. With vo =
50 MPH, _ = 12.5 MPH and c = 70 LB/FT/(MPH) 2 _/_ = 2.44 × 109 (LB/FT) 2.
Thus

1 (2.4 x 10-772 (1 + 0.I67S) (1 - 0.167S7 x 2.44 × 109 v ds "

2_j S 2 4.84) (S v) (v - $7j_ (0.167S 3 * S2 �3.23S_ 4.847 (- 0.167S s + - 3.23S + +

or

E-T _ I4.1 x 10 -s '., (1 + 0.167S) (1 - 0.167S7 ds
2_j D(s7 D(- S7

-jcv

where

D(S) = (0.I67S s �S2 + 3.23S + 4.84) (S + zJ7

i
, = 0.167S 4 + (0.167v + 17 S s + (3.23 + v) S 2 + (3.22z, + 4.847 S + 4.84v

Using the tables in Appendix E of reference I and putting _, = 1 rad/_c,

_J_ (1 (I - 0.167S) ds = 0.3172I4 = _ D(S) D(- $7
; m

With this value of I4, the MSE is

"_"= 14.1 x 10"s x 0.0172 : 24.2 × 10-7 rad2

and hence themeanerror

_" = 1.5,5 x I0 -s rad = 0.089 °

Evidently, ff our analytical model is correct, the system does not meet the specification
of a maximum error of 0.6 minutes or 0.01%

o"

SYSTEM COMPENSATION FOR MSE REDUCTION

The improvement of tracking accuracy for the system is dictated by the feasibility
of implementation. It would appear that the use of accelerometers is the only convenient
and practical addition to be made to the existing system for error reduction. With these
views in mind the effect of inclusion of an accelerometer, as shown in Figure 10 with
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Tw fn

I

J
t

!
K_(_ +0.667 S) K2 !

GI = S(1+0.167S) G2=KS G3= S--_ !

K! KK2 = 4.84 rad/volt {i

K2 = 7.33xT0 "4 rodS/ft-|b sec2 ...
rt = 5050

Ffgure 10
?

H = (KA/_K)S_, was investigated. The transfer function for the modified system in the
absence of an input is then

2.4 x 10 -7 (I + 0.167S)
GA(S_=

I2.26 x 10"s KAS4 + (7.33 x I0"4 K^ + 0.167_ Sz + S2 + 4.84

Proc£eding as before

_-v_ [J=%(S)G^(-S_d, (I)
2_j J. 5= (S+v) (v-S)

where

G/L(S) 2.4 x 10-7 (I + 0.167S)

S + v 12.26 x 10 -6 KASs + [7.33 x 10 -4 K^ (I + 0.167=,) �0.157]S 4 +

1

[1 + (7.33 x 10-4 K^ + 0.167) v] Ss + (3.23 _ =,) S2 + 4,84 (i + 0.567v) S + 4.84v
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For the case of _ = 1 rad/sec, and XA = 10, and using the tsbles of reference I

I s = 0.0168

and the error is

_" = 0.0897 °

A computer program was coded to facilitate the evaluation of the mean square error for
different values of K^. The results obtained indicated that the error increased mono-
tonically with increasing value of the accelerometer constant KA. Thus, this approach
falls to accomplish a reduction in the mean square error of the system.

The effect of rate feedback in the inner loop of the systen, of Figure 10 (H = (_/K) S)
was investigated next. The transfer function was found to be

C._(S)_ 2.4x 10-7 (I �0.167S)
(0.157 + 12.26 x I0-sI_) Ss + (I �7.33x 10-4K_) S2 + 3.23S + 4.34

and

GR(S) 2.4x I0"7 (I �0.167S)

: (0.167 _,12.26 × I0"s Kz) S4 + [(0.167 + 12.26 x I0-sK_) 9 + 1 + 7.33x 10-4] S3

!
&

+ [(1 + 7.33x 10 -4 ) 9 �3.23]S 2 + (3.239 + 4.84) S + 4.849

Substituting in (1) and using the aforementioned tables with 9 = 1 rad/sec, _ = 10

14 = 0.0173

and

= 0.0892 °

Results obtained from a computer program for different values of I_ showed no improve-
ment over the previous considered case of accelerometer feedback.

|

Finally a signal proportional to the output signal was fed back in the inner loop
• (H = _/Z). The transfer function for this case is

Ge(S) : 2.4 x 10-7 (1 ""
0.157S s + 12.26 x 10"s Ze) S2 + (3.23 �7.33x 10-4 F-_p)S + 4.84
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and
t

Gp(S) 2.4 x 10-7 (1 + 0.167S)

S + v 0.167S4 + (I + 0.167v + 12.26 x I0-s Kp) S3 + .[(1+ 12.26 × I0-s) _ + 3.23 + 7.33× 10.4] S_

1

+ [(3.23 + 7.33 x 10-4) v �4.84]S + 4.84

Thus, using equation 1 and the tables for _ = 10_ and _ = 1

I s -- 0.1395 × 10 -3

and

= 0.00802° = 0.49

mhmtes which meets the specifications.

2 was found that for this case the error decreased monotonically with increasing Kp.

The implementation of this last scheme for improving the accuracy of the system,
although not impossible, may prove difficult. The difficulty lies on the fact that an ac-
celerometer and two integrators are required and the bias of the accelerometer would be
dependent on the antenna position. However, as the existing system incorporates encoders
with a resolution of one rail at the output axes, it should be possible to program the ac-
celerometer bias based on the encoders output.

RMS TRACKING ERROR DUE TO NOISE

The effect of random noise on the servo system can be evaluated as an rms servo
error. Assuming additive gaussian white noise, the rms servo error may be calculated
using the same scheme utilized for wind torque effects.

The mean square error is determined from the relation

1 G(S) G(- S) _ba(S)ds
j®

where

_'_-= mean errorsquare

_b = noise power spectrum at the input of the servo system, equal to a
constant for white noise

• G(S) = servosystem closedloopfunctionwlthrespecttonoise

The blockdiagramofthesystem withtheinputnoiseisshown inFigure11.
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N

K. (I+ST 1 ) __"s _ (t+ST2)

Figure1"1

Then

Kzl (I _ STi)

.U.= K,o S=(l _ ST ) _ Kn(1 + ST,)

N 1 + K2('I + STI) Klc [S=(I , ST2) �K2(I+ STI)]

S=(i+ST=)

and

_-= _. I ['= K_,(I �ST,)(Z-STz)a,

K_o2"JJ.j®[S=(I+ST=)+K2(I+ST,)][S=(t-ST=) �Ô!´�-ST,)]

The total servo gain, I(,, = 4.84 and Kzodepends on the beamwidth which in turn is de-
pendent on the frequency of operation. The expression for Kto is

0.7
Kio

where

= halfbeamwidth

The mean square error equation may be written as

__ [K,,_' 1 f.J=C(S,C(-S)d,

where

c (s_ = 1 +ST,

V(S) = T2Sa + S= + K,tT,S _K,I
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For T1 = 0.667, T2 = 0.167, K11=4.84 and using Reference 1

i3 = (0.657)2 (4.84)(0.167) + 0.1572(4.84) (0.167) [-4.84 (0.167) + 3.23]

or

I s = 0.135

and hence

qbn (4.84) 2 (0.135)

The following table shows the error due to noise for a fixed beamwidth. This is done
for various radio frequencies and different values of noise spectrum as the actual values
of the latter were not known for the system considered.

I

Table 1
_ _ j

Beamwidth 10-2 rad Assumed rad 2 errorMC = 2 KIo
degree

136 6° 5.2 13.4 10*2 1.76 × 10°' 0.75
3,000 0.27 ° 0.23 300 10-2 3.52 × I0"9 3.4 x 10-3
8,000 0.10 ° 0.087 800 10"I 4.95 X 10.7 0.04
136 6° 5.2 13.4 10-3 1.76× I0"s 0.024
136 6° 5.2 13.4 5 × I0 "s 8.80 × I0-s 0.54

In order to see the effect of beamwidth on the noise, we rewrite Is as

z. 1)z2
13 = 2KilT 2 [-Zlx T2 +KzIT l]

and

1 +X11T_
Is'_,a; ,_-

2x;,z,

Also the open loop transfer function may be approximated by

G(S_= S2 +
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From the above two relations one finds

=0.071_b %_2

From the table it may be seen that for some values of noise spectrum the error would
not be acceptable. For instance a noise spectrum of 10"2 and a frequency of operation of
136 Me result in an unacceptable error. However, the above relation shows that ff the
noise spectrum occurs for a high altitude satellite, the error could be corrected by beam-
width reduction. For instance, if the signal to noise ratio is such that the 10-2 spectrum
applies for a 600-mile satellite, the gain needed is 25 db less than for a 10G-mile satel-
lite. This gain reduction reduces wc by about a factor of four and the error by about a
factor of two. From this one is led to the conclusion that an adaptive system is desirable.

ANALYSIS OF DATA

Field tests were performed in an attempt to establish an accurate transfer function
for the antenna dish structure and servo drive system. The data was obtained from ac-
celerometers placed in conver,ient parts of the dish, the feedbox, bull gear, tachometer,
and other locations.

If the accelerometer transfer function is assumed to be KS2,the following methods
should help in the determination of the system transfer function from the experimental
measurements.

?

A. Linear System Assumption

1. If the response of the open loop system to a step function is known, an ap-
proximate frequency response for the open loop transfer function can be
found.

2. The cross correlation of system input and output for a white noise input
yields the system's impulse response from which the transfer function may
be determined.

3. The measurement of the impulse response itself should determine the trans-
fer function. !

t

4. From variable sine wave inputs the transfer function may be established.

B. Nonlinear System Assumption
?

The first step in this method is the funding of any nonlinearities that would hinder ]
the operation of the antenna system. Proust's linear method may be used in de-
tecting such nonlinearities. In a linear system of infinite bandwidth, ff a square .i
wave of frequency w is applied at the input, the Fourier series of the input and

output are given respectively by: -

Input =4MIsinwt t r3 $ Srot ....] 1
!

- } ,Output = A(_) sin [cot+ _(co)] + I A(co)sin [3wt + _b(3(o)J+ • •
3
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ff the linear system has a limited bandwidth, the output would not be as shown above.
However, as the amplitude of higher harmonics are small, ff the frequency w is chosen
in such a way that only frequencies above the cutoff are not properly represented, it is
still possible to ftnd the useful part of the frequency response. Proust suggests that w
should be chosen such that the twelve db cutoff frequency of the system corresponds to the
eleventh harmonic in the Fourier expansion. If the system is highly nonlinear, the ampli-
tude and phase of the harmonics would not agree with the Fourier series.

Some types of nonlinearities may also be determined by additional tests. For instance
static friction, which could be a source of instability in a system, may be detected by using
a ramp input.

Field tests performed have provided open loop data for square wave, impulse function,
white noise, sine wave inputs as well as some closed loop responses. A resonant fre-
quency of two to two and a hail cycles appears to be the predominant frequency of the
system. A damping ratio of one tenth was also observed. However, some unexpected
output variations were observed from the accelerometers' recordings. This could not
be explained readily. For instance, the approximate amplitude readings on the accelerom-
eters located at the feedbox, X-bull gear and Y-bearing for a sine wave input In the Y-
direction are given in the folIowing table:

Table 2
Amplitudes

f Y-Bearing Feedbox". cps

0.01 I4.5 7.0 3.5
, 0.02 7.0 4.0 1.5

0.03 4.5 2.5 1.2
0.05 3.0 2.0 -
0.08 2.5 1.5 1.2
0.10 2.0 1.0 1.4
0.15 1.5 1.2 -
0.25 2.0 1.5 -
0.34 3.0 2.0 -
0.51 3.5 - -
0.78 4.5 2.5 2.0

!

I 1.00 ........... 5.0 I 3.0 3.0

. From Table II it is observed that around 0.1 to 0.15 there is a dip in amplitude in
all three accelerometers. In the X-bull gear there was also a shift of 180 degrees in the

•_ phase angle at this frequency. At hrst it was assumed that the structure had a low res-
onant frequency which was the cause of this amplitude variation. Figures 12a, 12b, and
12c show the block diagram of the accelerometers and their responses. Under the above
assumption, the change in pbase angle should be as shown in Figure 12c. Nevertheless,
the accelerometers did not exhibit this change in phase angle.

The X-buU gear showed a sudden change of 180 degrees while the Y-bearing and
feedbox do not exhibit any phase variation in the range of frequencies between 0.1 and

_ 0.15 cps. Thus the original assumption of low resona, t frequency of the structure was
not correct.
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IT s2+2_,,,.,s+,,,2 = s ..... "-_

_-K_LK;S:+2_,,,.,.2K_S+_.K__+K3
B S $2+282Wn2S+mn22

- s2.2s=_,.,._S_- Y : S=.2S_,,,n,,S*,,?._ '

(o)

180 = l

(c)

e 90 ° m

Figure 12

A second look at this situation did sh_w that gravitational effects or=the accelerometers
== could account for this anomaly. This may be proven mathematically. Figure 13 shows the

two accelerometers located at the bull gear and the feedbox. The output voltage of an ac-
celerometer, neglecting gravitational effects, is proportional to its ac..=leration. For
instance, with an angular velocity u' = ^ cos wt, the angular acceleration is e" = - A,,
sin wt and the linear acceleration is a = - raw sin wt. However, in the presence of a
gravitational force, and referring '.o Figure 12b, a force proportional to sin t_ is present.
As = A/, sin wt, the force will be proportional to sin (A/o_ sin wt). The output com-
ponent of the acceterometer due to such a force obviously depends on the location of the
accelerometer with respect to the rotating axis. For a sine wave input velocity the total -
output voltage of the accelerometers at the fecdbox and bull gear could then be written as

., [.,°( 0�p�--4
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,m

for the feedbox accelerometer and

for the bull gear accelerometer.

The first term of the above two expressions is due to gravitational force and is a
, frequency modulated wave.

|
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In order to justify the measured results, the coefficients _f the corresponding Bessel
series were computed with the aid of a computer and for the case of the bull gear Table 3
summarizes the results obta/ned.

Table 3

....... I

A, rps f A rAW e2/B G
CPS _ g

0.035 0.01 0.062 0.565 0.27 0.016 -0.254 ,
0.035 0.10 0.62 0.0565 0.027 0.16 0.133
0.035 1.0 6.2 0.00565 0.0028 1.6 1.6

(. 1)k (._.)n+2kj.(o-) = k.,(k + n)
k=O

This explains the reason for the change in amplitude and phase angle observed.

The noise present in most recordings of field data made impossible the determination
of the exact transfer functions. In particular a 10 cps frequency was very noticeable.
As this is close to the hydraulic's resonant frequency, it makes the presence of the latter.

• An attempt was made to an_..lyze the data .further by means of a spectrum analyzer
with very little positive results. Probably the presence of noise of considerable ampli-
tudes plus calibration problems and nonlinearities account for this fact.

In conclusion, a 2.5 cps frequency appears to be the main resonant frequency of the
system. The associated damping ratio is 0.I. It is also observed that a 12.5 cps fre-
quency is present at some points in the feedbox and dish.

Correlatio:x techniques were also employed as an attempt to further analyze the field
data. A freqvancy of about 1.5 cps is apparent in some of the correlograms obtained. No
explanation has been found for this and it is suggested that further work be done in both the
spectrum analysis and correlation ends of the data evaluation.
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N66 31158_ _:

NOTES ON THE SP N :.
by

H. A. Sabbagh

The spin-hamiltonian formalism, or more precisely, the effective spin-hamiltonian
formalism, is a very useful one for calculating magnetic properties of paramagnetic ions

" imbedded in a crystal lattice. These properties are very significant in maser work. For
._nstance, a typical calculation, which we shall later make, is that of the energy levels
versus an applied d.c. magnetic field. Once these calculations are m_de one can then in-
vestigate such things as pumping schemes, idler and signal frequencies, etc. One can
even decide if a particular material is suitable for a maser on the basis of spln-hamil:.onian
calculations.

The fundamental idea behind the formalism is to describ_ the interaction of a para-
magnetic ion with its crystalline surroundings and an applied magnetic field by a function

of the total spin resulting from the unpaired electrons within the ion.

The the¢,'etical bases for prescribing the form of the spin function and the calcrta-
tions result& • therefrom are, of course, q_.tum mechanical. The coefficients appear-
ing in the spit, function (hereafter called the spin-hamiltonian), though calculable in theory,

are usually determined empirically. Indeed, this forced union of experiment and theoryis what makes the formalism so powerful. We attempt to describe the theoretical be-
.. havior of a paramagnetic ion using a few emepirical constants. In this report we shall use
_ two specific examples as a means of surveying the theory of the spin-hamfltonian. The

first example is that of F+++Embedded in TiO 2 (futile); the second is Ho++ in a CaF2
"_ lattice. .
4_

- I. Fe+++: TiO2 [Bleaney and Stevens, 1953; Bowers a_d Owen, 1955]

_ The 5 unpaired electrons in Fe s+ are each in the 3d state. This means that the ion
" itself is in an orbital S state, i.e., L = 0. To prove this we use Hund's rule together with

the Pauli exclusion principle [P_e, 1962]. Hund'_ rules are:

1. Assign maximum S (spin) consistent with the Pauli principle.

2. Assign maximum L (orbital angular momentum) consistent with the s. L is de-
fined to be the maximum value of the sum of the z-components of orbital angular
momentum for the group of electrons.

Thus, each electron has the same energy quantum number, 3, the same orbital angular
momentum quantum number, 2 (corresponding to the d state), and, ff we are to assign
maximum spin to the electron group, the same spin quantum number, 1/2. If there is to
be no violation of the Pauli principle, therefore, each electron must have a different

. quantum number, m, corresponding to the z-component of orbital angular momentum. Be-
cause 1 = $ for a d-state, we have m = 2, 1, 0, -I, -2. Thus electron #1 has m= 2, #2
hasm = l, etc., to #S having m= -2. The total M = _l + m. +=s +m4 + m. = 0. But
since any ,trrangement of the five electrons among the five m-states always y_elds = 0,
we conclude that L = 0 (recall that L = _,_ ). Thus, Fe 3+ is in an S-state (L = 0) with
a spin equal to 5/2.
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The spin-hamiltonian for the Fe3*: Ti_)2 complex is [Carter and Ckaya, 1960]:

e : gp_._, D(S2- 35/I2) �E(S_- Sb

+ (a,/5) .4_S.:+S4 + s4 - 707116) tl_v...,
y Z

+ (7/36) F(Sz4 - (95/14) S2, + 81/16).

The nominal values of the derived constants are:

g : 2.0, D : 20.35 gc, E = 2.21 gc

a--1.1gc,F=-0.5 gc

p istheBohr rnagnetondividedby h,Plank'sconstant,andisequalto e/4_c = 0.0014gc
per gauss (e = electroniccharge,m = electronicmass, and c = velocityoflight).H is
theappliedd.c.magneticfield,measured ingauss. Th_ spinmatricesS, S andszare
dimensionless.Thus thehamiltoniangivesus frequencydirectly,rather'tha_energy.
Of course,energy = hx frequency.

The firstterm in (1-I)givesus theinteractionofthetotalspinwiththeexternal
magneticfield.The remainingterms representtheinteractionoftheionwithitscrystal-
linesurrounding.To understandthis,considerthatthecrystallinefieldisderivedfrom
an electrostatic potential which satisfies LaPlace's equatl-_.a

-d2V _2V _2V....+__ �_.o. (I-2)
_)x2 _)y2 _z_

The solutionofthisequationmay be expandedina seriesofsphericalharmonics,
_'_.(o,_):

v: _ c_ ._Y:. (1-3)

Ifwe considerthe1 = 2 term anduse thefactthatx --r sin 0 cos % y --r sin0
sin¢p,z = r cos _,we haveforthefive1 = 2 terms (for1 = 2 we have m = 2, 1,0, -1,
-2)

?

xy,xz,yz,312- r2,x2- y2. (1-4)

Ifwe replacethespacecoordinatesx,y,z by thespinoperatorsS=,S.,andS, respec-
tively,we get the additional terms of the sptn-hamiltonian. The JustifiCation for this
substitution lies in the Wtgner-Eckart theorem of quantum mechanics [Merzbacher, 1961;
Slichter, 1963 ].

The x-, y-, and z-a_es appearing in the spin-hamiltoniau are referred to the crystal
axes by

64.
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Hamiltonlan axis Direction in crystal

x [Ilo]

y [o01]

z [1 1 o]

The Pauli spin-matrices, s x, sy and s are the 6 × 6 matrices

0 5_/2 0 0 0 0

5_/_ 0 8_/2 0 0 0

1 0 8I/2 0 3 0 0

S =_. 0 0 3 0 8I/2 0

0 0 0 81/2 0 5 I/2

0 0 0 0 51/2 0

0 -i'5 I/2 0 0 0 0

i. 5_/2 0 -i. 8x/:z 0 0 0

0 i-8 x/2 0 -i.3 0 0

S =I__ 0 0 i.3 0 -i8Z/2 0
Y 2 0 0 0 i"8 I/2 0 -i 51/2

0 0 0 0 151/2 0

5 0 0 0 0 0

0 3 0 0 0 0

1 o o 1 o o o (1-5)
S =_- 0 0 0 -1 0 0

0 0 0 0 -3 0

[ _ 0 o 0 0 0 -5_

We calculate, using ordinary matrix multiplication, the following matrices which
appear in (1-1):

5 0 40_/2 0 0 0
'9

0 13 0 721/2 0 0

$2 =--1 40*/2 0 17 0 721/2 0
x 4 0 721/2 0 17 0 401/2

0 0 72* '2 0 13 0

_ 0 0 0 401/2 0 5 __
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5 0 _(40)I/2 0 0 0

0 13 0 -(72) I/2 0 0

$2 1 -( 40)2/2 0 17 0 -(72) I/2 0
Y ='4 0 -(72) I/2 0 17 0 -(40) t/2

0 0 -(72)I12 0 13 0

_ 0 0 0 -(40) _/_ 0 5 _

--25 0 0 0 0 0-

0 9 0 0 0 0

$2 1 0 0 1 0 0 0
z 4 0 0 0 1 0 0

0 0 0 0 9 0

0 0 0 0 0 25_

65 0 44.10 t/2 0 24.$ t/2 0

0 241 0 180.2 :/2 0 24.S 212

=1 44"10z/2 0 401 0 180.2I/2 0$4
x "_ 0 180-2I/2 0 401 0 44.10I/2

- 24.51/2 0 180.2 :/: 0 24I 0

_ 0 24.52/2 0 44.10 -I/2 0 65 _

65 0 -44.I 02/2 0 24.5 t/2 0

0 241 0 -180.22/_ 0 24.5 t/2

$4 = I__. _44.101/2 0 401 0 -180.2tl_ 0
Y 16

0 °180.2 :/2 0 401 0 -44.10 I/2

24,5t/2 0 _180.2:/2 0 241 0

0 24.5t/2 0 -4_.I0 t/_ 0 65

and

-_25 o o o o 0-

/ 0 81 0 0 0 0
0 0 I 0 0 0

s' =1-_" (l-e)" 0 0 0 1 0 0

0 0 0 0 81 0

_ 0 0 0 0 0 625_

The constants 35/12, _t07/16, and 81/16 axe really the matrices (85/12)0, (/07/16) V,
and (81/16) U, respectively, where V is the 6 x 6 unit matr_, baying l's along the maJn
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diagonal and zeros elsewhere. Using the results obtained so far we have for the spin-
hamiltonian, H, the 6 × 6 matrix

"_5.007H 0 6.98 0 1.23 0 --
+68.15)

• " 0 (0.0042H 0 9.37 0 1.23
-I4.78)

6.98 0 (0.0014H 0 9.37 0
-53.57)

e : (1-7)

0 9.37 0 (-0.0014H 0 6.98
-53.57)

1.23 0 9.37 0 (-0.0042H 0
-14.78)

(-O.O07H
_ 0 1.23 0 6.98 0 +68.15)_

In writing down this final form for a we have assumed that _ = e e",, (_, being the unit
vector in the z-direction), which means that _-_ = HS.

Derivation of Energy Levels Using the Spin-Hamiltonian

• According to the general rules of quantum mechanics, the state of a system is defined
- in terms of the solution of Schr_dinger's equation:

._- ih_: H_ (1-8)

If H does not depend on time then it is convenient to assume th&t

; I let)! _:. exp _._- 0-9)

where u is independent of time. Upon substituting (1-9) into (1-8) it follows that u must
satisfy the time-independent wave equation:

eu = Eu. (1-10)

It is apparent from (1-9) that E is an energy parameter because _/6 must be angular
frequency. Thus, (1-I0) is an eigen-value, or charactertstic-value, equation in which u
and E are the etgen-vector (or eigenstate) and energy respectively, of the system rep-
resented by the Hamiltonian H.

I
. Because S is a 6 x 6 matrix, the _tate vector, u, must be a 6-row, l-column vector:

u I

i u 3u=

u 4
L

u S

ue- 87
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Operating on (1-II) with (1-7)gives us, for (1-10):

(0.O07H _ 68.15) u I _ 6.98 u3 + 1.23 us = Eu I

(0.0042H - 14.78) u2 + 9.37 u4 + 1.23 u6 = Eu2

5.98 uI + (O.O014H - 53.57) u3 + 9.37 u5 : Eu s

9.37 us + (-0.0014H - 53.57) u4 + 6.98 u6 = Eu 4

1.23 uj + 9.37 ua _ (-0.0042H - 14.78) us : Eu s

1.23 us + 6.98 u4 + (-0.007H + 68.15) u5 = Eu¢

or, after transposing the right-hand side:

(O.007H + 68.15 - E) uI + 6.98 us + 1.23 us = 0

(0.0042H- 14.78 - E) u2 �9.37u4 + 1.23 u_ = 0

6.98 us + (0.O014H- 53.57 - E) us + 9.37 us = 0

(1-13)
9.37 u2 �(-0.0014H- 53.57 - E) u4 + 6.98 u6 : 0

1.23 uI + 9.37 us + (-0.0042H - 14.78 - E) us =0

1.23 us + 6.98 u4 �(-0.007H+ 68.15 - E) us = 0

This is a homogeneous system of linear equations to be solved for u1, us, %, u4 ,
us , %. In order for at least one of these u's to be non-zero, it is necessary that the
determinant of the coefficient matrix vanish. We require, therefore, that:

m m

(0.007H �06.98 0 1.23 0
68.1 S-E)

0 (0.0042H- 0 9.37 0 1.23
14.78-E)

det 6.98 0 (0.0014H- 0 9.37 053.57-E) = 0 (1-14)(-0.O014H-
0 9.37 0 53.57-E) 0 6.98

(-0.0042H- 0
.p 1.23 0 9.37 0 14.78-E)

0 1.23 0 6.98 0 (-0.007H+
_ 68.15-_, _

For each value of the magnetic field, It, there correspond six values of E satisfying
(1-14). A program for computing these etgen-values was written by Mr. Henry Miller
for the IBM-7094. This program gives not only the eigen-values, E, but also the cor-
responding etgen-vectors, u. The numerical results are shown tn Fig. 1.

It is noted that the zero-field energies occur in pairs. Each patr is called a Kramers'
doublet to signify that it may be interpreted by Kramers' theorem which states that In a
system containing an odd number of electrons, an electric field (in this case the crystal-
line electric field) cannot completely remove all degeneracies (when two or more energy
states coincide, the corresponding energy level is said to be degenerate).
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We may calculate the energy levels for different orientations of ff by modifying the
_._ term appearing in (1-1). Figure 2 illustrates the spherical coordinates to be used.

In terms of the spherical coordinates we have:

I

g = H sin E)cos _) _x �Hsi. 8 sin q_a-y + H cos 0 _, (1-I5) :
!

where

a = I_1.
!

Thus

H'g = (H sin 8 cos cp) S, + (H sin 0 sin q)) Sy + H cos 0 S=, (1-16)

where S,, sy, and S, are the spin matrices of (I-5). The effect of (1-16) is to introduce ,i
new terms in the sptn-hamiltonian matrix, H. This modifies (1-7) and (1-14) showing that
the energy levels vary with e and _ and, hence, with the orientation of ft.

II. Ho++: CaF2 [Sabtsky and Lewis, 1963].

Holmium is a type 4f rare earth, which means that the divalent Holmium ion has Its
unpaired electrons in the 4f shell where they are effectively screened from their crystalline
surroundings by electrons in the outer shells. Therefore, as a reasonable approximation

. to the effective sptn-hamiltontan we may discard any terms that represent the crystalline
field. We must, however, include the spin-spin interaction between the unpaired electrons
and the nucleus because these electrons are relatively close to the nucleus. Thus, we use
the following spin-hamlltontan

H= gPH._ + AT._, (2-1)
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where g = 5.91, /s = 0.0014 gc/gauss, A= 3.924 gc, _ is the electron spin operator, with
effective spin 1/2, and r is the nuclear spin operator with spin 7/2.

Because we are dealing with a system of two particles (electron plus nucleus) we can-_
not simply form matrix products in order to evaluate H. In (2-1) the term I. _ must be
interpreted as the direct-product of the operators )"and _. This concept will be explained
in more detail.

The effective electron spin of 1/2 means that there are 2 x 1/2 + 1 = 2 possible pro-
jections of the electronic spin vector upon (say) the Z-axis: spin "up" bud spiv "down".
The nuclear spin of 7/2 implies that there are 2 x 7/2 + 1 = 8 possible orientations of the
nuclear spin moment. Hence, there are 16 possible states jointly involving the nucleus and
e)ectron, eight corresponding to electronic spin up and eight more for spin down.

If

% = ,_io]
(2-2)

_2= [0 I],

stand for electronic spin up and spin down, respectively, and

,o_=[iooooooo1. /3s=[OOOOIOOO]

_2--[°Io°°°°o], _6=_oooooioo]

/&=[oolooooo], /_7=[ooooooIo]

p,_-[ooo_oooo], /_8=[ooooooolI

stand for the eight nuclear spin states, then the direct-products of the electrorJc and
nuclear spin states are represented by the 1 x 16 matrices (or row-rectors):

It>: [Io ....... o]
l

i 12>: [oIo ...... O]
I

]3>: [oo xo ..... o]

14> = [0 0 0 I 0 .... O] (9.°4)

etc.

q

lls>=[ooo.'.••olo]

I16> = [00 ..... O0 I]"

The first eight direct-product states correstzmd to electronic spin up and the last
eight to spin down.

- If we arbitrarily take the magneUc field, if, t_) lie along the z-axls, then g_I_._ =
g_ HS,, where H is the magnitude Of_L We must treat this operator u the direct product
of s, and u, where
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o], °_5,
and

m

1 0 0 0 0 0 0 0

• 0 1 0 0 0 0 0 0

0 0 ! 0 0 0 0 0

• 0 0 0 1 0 0 0 0
v = (2-e)0 0 0 0 ! 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

is the 8 × 8 unit (or identity) matrix.

The direct product of these two matrices is given by the 16 × 16 matrix

1 o o o o o o o :

o 1 o o o o o o "

"_ 0 0 ! 0 0 0 0 0 "_

o o o t o o o o .:

: 0 0 0 0 I 0 0 0 :. 0

0 0 0 0 0 1 0 0 i

0 0 0 0 0 0 1 0 :

.: . 0 0 0 0 0 0 0 1
s, u_ .................................................................................... (2-7)

:'-1 0 0 0 0 0 0 0

: 0 -I 0 0 0 0 0 0

• 0 0 -I 0 0 0 0 0

: 0 0 0 -! 0 0 0 0

0 _ 0 0 0 0 -I 0 0 0

.i 0 0 0 0 0 -1 0 0

0 0 0 0 0 0 -1 0

:" 0 0 0 0 0 0 0 -I

Next, we must calculate the direct-product, r × _, of T and _[. By definition Iv× _ =

• × S + l, × S, where, for the system being studied:LXS x + Iy y

..4[oo'] [o,4 ". o] ,,..,
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m

0 7I/2 0 0 0 0 0 0

7I/2 0 12I/2 0 0 0 0 0

0 12I/2 0 15z/2 0 0 0 0

0 0 15 _/2 0 4 0 0 0

2 0 0 0 4 0 15 _/2 0 0

0 0 0 0 15 t/2 0 12 t/2 0

0 0 0 0 0 121/_ 0 7_/2

0 0 0 0 0 0 71/2 0

0 -i7 I12 0 0 0 0 0 0 --

i7a/2 0 -i12 :/2 0 0 0 0 0

0 i121:2 0 -i15 _/2 0 0 0 0

0 0 ; 15 I/_ 0 -i4 0 0 0

Y 2 0 0 0 i4 0 -ilS s/2 0 0

0 0 0 0 i15I/2 0 -i12 I/2 0

0 0 0 0 0 i12 I/z 0 -i7)/2

_ 0 0 0 0 0 0 i7I/2 0 j

m

7 0 0 0 0 0 0 0

0 5 0 0 0 0 0 0

0 0 3 0 0 0 0 0

I'--12 0 0 0 1 0 0 0 0- 0 0 0 0 -I 0 0 0

0 0 0 0 0 -3 0 0

0 0 0 0 0 0 -5 0

-0 0 0 0 0 0 0 -7_ ,

The required direct-products are given by the 16 × 16 matrices:
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: 0 7l/2 0 0 0 0 0 0

;7 I/2 0 12 I/2 0 0 0 0 0

: 0 121/2 0 151/2 0 0 0 0

: 0 0 151/2 0 4 0 0 0
: 0 :

: 0 0 0 4 0 151/2 0 0
g

0 0 0 0 151/2 0 121/_ 0

:" 0 0 0 0 0 12 I/2 0 71/2 i

: t: 0 0 0 0 0 0 71/_ 0
1 " |

0 7 I/_ 0 0 0 0 0 0 :"

• 17x/2 0 12I/2 0 0 0 0 0 "

0 121/2 0 15I/2 0 0 0 0 "

0 0 151/_ 0 4 0 0 0 :
• 0

0 0 0 4 0 15 t/2 0 0 :
e

0 0 0 0 15 I/2 0 121/2 0 :

0 0 0 0 0 121/2 0 7I/2"

0 0 0 0 0 0 7_/2 0 :

f

:. 0 --7I/2 0 0 0 0 0 0

: 7112 0 -121/2 0 0 0 0 0

•: 0 12 t/2 0 -15 z/2 0 0 0 0

i 0 0 15_/2 0 -4 0 0 0
0 .

: 0 0 0 4 0 -151/2 0 0

: 0 0 0 0 151/2 0 -121/2 0

:" 0 0 0 0 0 12I/2 0 -71/2

: 0 0 0 0 0 0 71/_ 0
I =1 -"

_y X Y 4 Rseea•ts_e•_m•e•_e•es.•*•e_`_=•_e=_ie*es•e_aIeegeg_Ie_Qti_BiReIe_ewe=•_•_m_=*_••e•_•_e_ae•_eseee_

0 7_/_ 0 0 0 0 0 0 :.

-7 z/2 0 I2 l/_ 0 0 0 0 0 i

0 -121/_ 0 15_/_ 0 0 0 0 :

o 0 -15I/2 0 4 0 0 0
" 0

0 0 0 -4 0 151/2 0 0
tk

0 -15 _/2 0 12_/2 0 i
0 0 0

0 0 0 0 0 -121/2 0 71/2

0 0 0 0 0 0 --7_/2 0 :"
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t t

-7 0 0 0 0 0 0 0 :
t

0500 0 0 0 O_
0030 0 0 0 O;

o o o 1 o o o o:" o
0 0 0 0 -1 0 O. 0 ;

s

0000 0 -3 0 0 ;
=

0 o 00 o o -5 0 :, o

0 0 0 0 0 0 0 -7 :
eo_el=selsooe_loeie 1Be =l_eesge•_l_ eaeilee_ees_mo=oeemt a_so •oeltg

S=x I==._, ,:-7 0 0 00 0 0 0

"o-s o o o o o o
: 0 0 -3 0 0 0 0 0

: 0 0 0 -1 0 0 0 0
0 ;

:0 0 0 01000
i,

:0 0 0 00300

":0 0 0 000 SO

_ : 0 0 0 0 0 0 0 7 _ (2-9)

Upon substltutlng (2-7) and (2-9) into (2-1), we get (2-10) as the final form of the spin*
hamiltonlan matrix. AU entries not shown are zero, and E is measured in kflogauss.

From this polnL on the analysis proceeds as in the treatment of Iron-doped ruffle.
We must calculate the eigen-values of (2-10) as a function of II. The resul_ of the IBM-
7094 computations are shown in Figure 3.

A comparison of Figures I and 3 shows that Ho+�has a much more uniform varla-
tion of energy (and hence resonant frequency) with H than does Fe + �ˆfo_ows, as
has been mentioned before, becmase the unpaired electrons in t4o.++ are screened from
the crystalline field, whereas those of Fe s �arenOts Hence, So =+ behaves, for II greater
thml 3 ktlogauss, as a free spin in an external magnetic field. We would expect this same
qualitative behavior for many of the 4f rare earths, no matter wha-: the crystal lattice is.

I

O

?
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A PRELIMINARY STUDY OF HOLOGRAPHY

: L.G. McCracken, Jr.,AssociateProfessor i

Electrical Engineering, Lehigh University i
. Bethlehem, Pennsylva_ia

|

This is a preliminary study of holograms for information processing, attention being
directed toward their formation, reconstruction of their images, and the images resolu-
tion. The formation of holograms is studied with respect to information preservation for !
two_ and three-dimensional obje¢_ts and resolution of the interference patterns controlled
by frequency dispersion, beam collimation, and relative motions of the laser light source
and objects to be imaged. Here, the emphasis has been placed on contrast and energy
ratios; so that a suitable quantization measure can be determine_ For reconstruction of
the images from holograms, the problem of "twinning" and its removal, multiple images
spatially and/or frequency separated, and aperture limiting phenomena are explored.
Finally, the image resolution upon reconstruction, manifesting the completeness of the
hologram process, is found to depend on the previously discussed factors in such a way

| that additional study is required to obtain a meaningful measure.

, H. FORMATION AND RECONSTRUCTION OF HOLOGRAMS

Information Preservation with Holograms

A two-dimensional screen with (N., N_) elements per unit length is interposed along a
collimated path of monochromatic radiatibn of wavelength _. from a source Q, to a re-
cording medium x of elements p _:p, the observation point. Simultaneous with radiation
from a source 0, is a similar monochromatic, unobscured source 02 radiating along a
path oriented at ah angle _ with respect to the normal to the medium's plane, _. The
information content i for the interposed screen Y-I, ;/ = l°g2 N_ + log 2 Ny, is preserved
in the original mapping via Q_, and the interference pattern induced by the addition of the
second source ( 2 suffers no loss of information content as evidenced by the equivalent
field 2 generated by the "complementary" s screen, whose current distribution complements
the original screen distribution. Thus, one sees the typical interference pattern for two

(Nx _Ny)

- o, 1tt_ 1

Figure|-FounatlonofholoQmm
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sources from which is subtracted the complementary field, and for black-white screens
one easily notes there is no information loss.

Collapsing Loss in Imaging with Holograms

Allow a three-dimensional configuration of objects to be illuminated by a collimated
monochromat of wavelength _. o

_(P) = _2(P) + _s(P)

n _ i k_q k

k=l

90'):_(P)+¢t(P):

_(P):2cos(-_) -_-_-_. (I)

The radiationfrom theconfigurationhas an equivalentdistributionofcurrentsourceson
thescreen Xt,hencetheinformationcontentforthescreenispreservedinitsimaging
on therecordingmedium. Becausethedistributionon thescreenhas a collapseofdimen-
sion,a lossofinformationnecessarilydoes occurintheformationofa hologram.

Z

o, III,,

_P

Figure 2-Equivalentscreen

Supposing one could vary the observation point upon readout from the hologram, one
could alter the "screen's" location, modify the shadowing or silouhetting that one sees
and thus recover the information lost via collapse.

Twinning and Loss of Information for Holograms

In the formation of a hologram, one cannot avoid a difference of intensifies for _bI (P)
and _2 (P), though they be coherent sources. For reference, _bt (P) and _2 (P) have
been chosen conveniently to be of unit magnitude, hence we can refer to them as _t.0 (I')
and _2 o (r.), respectively; again, for convenience, we can choose 9_ (P) = I__b_.0(P)
_"a co_piex constant, in order that we can refer back to the simple'st case when rffi
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_____.__t-'-'-

Q2_ :_P

Im

Figure 3-The ho|ogram scene

The !mage formed on the surface _, for p E p, is of wave potential _ (p),

1 _. j_'_l
_b(P): _b_(p)+ 4"_-" I(crl) dcrl (2)

I RP_I

where I (_[) is the equivalent current distribution for the screen _, containing the pro-
jected information from the geometrical array of objects placed between the source QI
and the screen, and the appropriate kernel function is for free-space. Were the objects
removed, the screen's distribution becoming uniform because of the collimated light
source Q_, the interference pattern at _ would show the difference of O. and 02; upon
replacement, the information on the screen would be preserved In the ne_winterference
pattern. One would find the wave potential _(P) to be

C
_(P): _b2(1")+¢,_(P)- J _ O(p;_i) d_,

where _ is now the "complementary current distribution, and in terms of the refer-
ence solution qJ(l_ is

_b(P)=2cos(_)-(l-V)_b,.o(P)-f_. I(u,---_G(p;ul)dcr, (3)!

The new term (1 -P) _2 0 (P) prevents perfect cancellation in the interference pattern,
decreases the contrast 'ratio, and thus serves to destroy information stored in the hologram.
This is a significant effect and accounts for "binary erasures" in the readout process.

Subject to the formation of a perfect hologram, in the sense that V = 1, one is
able to reconstruct the image o and its conjugate o" by illumination of the screen _ with
a coherent source Q_. The conjugate image o', the twin, is out-of-focus with respect to

* O, unwanted, 4 and can be eliminated by various methods, two of which are illustrated here.
The first, due to Bragg and Rogers / relies on the utilization of a complementary hologram
H2 placed at twiCe the focal distance d from th_ ologram HI. It can be seen that the
image O' is cancelled by its opposite o" in the focal plane where the arrow appears. The
secona, due to Lohmann: makes use of a perfectly conducting half-plane placed between
the hologram _ and the focal plane at o. The screen _ with its tnterferenc_ pattern is
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*ctlt_ __
- III

H! H2

Figure 4-Brogg-Rogerscancel|arianmethod

41

.d o.

H_

F_gure5-Lohmanncancellationmethod

like an antenna whose current distribution has been reduced to zero over half the aperture.
The effect is to displace the radiation pattern toward the illuminated region, so that the
Fraunhofer region contains no radiation from the dark space. The rays in both cases
should contain no "twin" information, hence the resolution would be significantly improved.

Multiple Image Reconstruction from Holograms

Several images of objects irradiated by the same or different collimated light sources
can be stored on a hologram for a multiplex communication system 7 .s or a navigation
reference. 9 In the former application, several diffraction gratings are individually
angularly modulated proportional to the intelligence to be transmitted or appropriately
digitally coded, and the hologram formed contains the several channels of information;
in the latter application, a Fresnel zone plate is optically spatially correlated, with x-ray
emanations from stars in outer space, and the hologram contains their angular informa-
tions. Upon reconstruction, one expects to recover the object information.

When the objects are angular disjoint with respect to one another and when there is
no loss of resolution in the process, the image reconstruction can retain the angular dis-
jointness subject only to the confusion offered by the reading beam and twin, z0.zz or con-
jugate, images. That this is the case is easily seen below.

The reconstructed wavefronts from the hologram are "plane," the spreading over an
angular sector $ for a typical wavefront arising from errors in the current distribution
on the hologram H. The intensity of scattered radiation in the forward direction 3(P) is
described as

j(p) = 1__!__5-_ ii i,l _ e do"z do"2 +

(4_)2 _t.! _;I RPCrt RPCr2
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where the first-term is the angularly-disjoint intensity for the real image and the second
term, normally zero, is the correlation of the currents and their fields mutually ex-
clusively. The out-of-focus ensemble, or set of twins, is not included in this description,
and, in addition, to remove them entails some loss as to the number of o'.j¢cts and their
sectors that can be stored. This is a consequence of the half-plane technique of twin
removal.

: Image Reconstruction from Finite Holograms

To determine the minimum size of a holo- __ __

gram for information storage purposes, one
intuitively thinks z:. 13 of an aperture-controUed
grating, the grating estabItshing orders of dif-

fracted waves and the aperture their individual _tl[ =.i__._

resolutions. The ruled lines on the hologJ :_m 0

constitute the grating, and they are interfero- .....-"metrically formed by the original and side ilo

luminations. Desirably, one wants a many wave o'¢'"
length regular grating for image formation with
irregularities less than a quarter-of-a-wave-
length z4 to avoid ghost intensities, zs

F_gure 6-Finite Pupil

The ghost phenomena of RowIand z5 has been
reported by Z. H. Heller 17 for a He-Ne laser,
6943A, and "maperture-controlled grating of 15,000 lines/inch and width 2.5 × 10-_ cms.
Comparing the resolution and ghosts for this situation against a similar one of a sodium
source, where the slit width was 2.5 × 10.3 cms., he found decided advantage for laser
source; the corresponding situation for linear antennas is one of a few hundred linear
elements contrasted to one of twenty elements. On this basis, one is led to the intuitively
and satisfactory condition a > >_ with an upper bound determined by the extent to which
coherent phase addition applies to the emerging wavefronts on reconstruction.

The situation of a limited aperture is easily expressed by zs

_(P) _ _,(P) * ACP),

where the convolution of the hologram and aperture fields give rise to the diffracted field.
Even in reconstruction a twin-image will appear due to the conjugate one at 0'. The
angular distribution of intensity is well-known for the uniformly-illuminated screen, and
it is

_(_5) = k.__ e ikg_kxsin_b dy, k :: constant !

R!/2 "_./2 i
|

i.e., i

• (5)

2 i
showing a typical Fresnel behavior of a (sin a/4) distribution. The angular spread be- !
tween the two nulls symmetrically displaced with respect to the real image's ray is _ = !
2 sin "2 (_/a), corresponding to twice the "space-sampling angle," and an e_.cellent I!

I
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reconstruction of the image occurs only ff this angle _ be very small. For hundreds of
wavelengths of extent for the hologram, the reconstruction of the real image tends to
reach a limit of resolution controlled by hologram irregularities and the sources fre*
quency dispersion.

TIT. RESOLUTK)N FOR HOLOGRAM IMAGES

Interference Pattern Shift Induced by Frequency Dispersion

What effect does the e.pectrum of the emitted, radiation from a laser have on the
resolution property of a hologram? With simplifications in mind, one can start with a
periodic one formed by two plane waves impinging on the screen at some now-zero rela*
Live angle. Allowing one to be normal, the other inclined at an angle _, the undulations
of the intennity of illumination follow a coeinusoidal law with well-known regularly°
spaced maxima and minima. As the locations of peaks and valleys are sensitive to the
wave-number of emission, its probability distribution affects the average peak and re-
moves the null of the pattern. Although the spectrum is typically a quadratic functional,
little error will be introduced ff the nose of the spectrum, parabolic in shape, be fitted
to a Ganssian error function and this be used to determine the ratio of average maximum
to average minimum intensities.

On the hologram itself the maxima shift in accordance with the relation

dy m

where m is the number of the maxima, _ = 0 implying the origin y = 0, consequently
the distribution p(y) is

(y - yo)2 }
p(y) _ 1 exp -

with

As the same applies to the minima, m permitted to assume half-intoger values (, 1/2,
3/2, ...... , : _/2), the expectations of the minimum and zzmxtmum intensities are

.-,- ( �-)= _ v81Ue fOr n z • ,
2
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and

<J
The ratio of these intensities is then seen to be

: p ..... (6)

0.,.)
Inspection of the intensity ratio shows a dependence on the "noise" In the hologram,

and one appreciates the significance 9t this ratio where one is asked for a measure
suitable spatial resolution comparisons. The amount of information stored in the holo-
gram also depends on this quantity. A related quantity is the Mlchelson contrast ratio

I --I .
mix mgo

C- I=,. +Imi n"

and as in the case of Diederichand Lohmann, '9 who studied roughness of lens surfaces
on image formations, one finds

A2 . or2
c (m) .

a2 +_2

Amplitude Quantization Induced by Dispersive Radiation

Let a and /3 be randomly distributed vari- L X
ables taking lnto account the divergence of an A _\_ ;otherwise collimated, monochromatic beam )

radiating from O, and sympathetically from 0m. -_ " _ F \_
The wave potentl--I _(P) for peP induces cur- !___ L.... L_ ...... _,-'_ I

rents with random distributions on the screen ot_....__ , .... ,__../ _ -_•X. Illterms of the random angles o, and 04, -J:-_--_ ,

where0, =k,- (_-_,)and 8,= _..(_-T.), _''"I

one has !
!

• Q2 O(P
_(P) =e 'or +e la_, *

Figure7-Bmm 5pm-,_lint)
so that

J(P) _-,.OP.,'= 4 cos' ( 8-_t_) • !

' • Near the maxima, specifically when 0t - t)2 = m(2,r), m = 0, *1, _:2, + ........ , eN, the
: intensity J(P) is

i

]

[ ,o,:.,..]JO') -,- 4 t= I
°
i
!

!

1

t
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and for 2 = k_"l,

J(P) "" 4II= - "_J-_12(1 -k)214"

with a statistical average

i,J :.

This resuR allows us to see a deterioration of the brightness of the hologram X, when {
the radiation from 0 t is shadowed by interposed objects. Though the deterioration is
not rapid, the effect cannot be neglected. In sharp contrast, the minima are seriously
affected, ,_nd they follow first

>

(Ot-02 (2m I)_ , re=O, -+I,±2, ± .... , _+IN ,;J(P} _ 4 2 -

J(P) _ [&_,(1-k) -(2m + I) n] 2,
second -

<j > 4o ) "\(P) _" (I -k)2 -_,_1/"2(1 -k) (2m +1)Ir+ (2m + I)2n: -

<J(P)>_" 82 2, -.= _ (I - k)

and one finallysees imperfectcancellationwitha ratioof maxima-to-minlma statistically
becoming

OI

4 I --_--(i - k)p = _ . (8)

_2 (I - k)2
01

?

The comparison of this result with the frequency dispersive relation reveals the

, quantal sensitivity of the respective phenomena, frequency and angular dispersions. The
ratio k of beam angles is dependent only on the first-order relations corresponding to
the _ :ometry of the sources and hologram screen _. Thus, the control of resolution for *'
the .-"ogram is centered o_ the required quantal sensitivities and the extent to which
they are important in the face of fundamental resolution for the hologram itself.

Vibration and Contrast Ratio for Holograms

The hologram screen x can move randomly relative to the (x, y) reference frame
and thereby contribute to a loss of resolution. As unidirectional movement only can occur,
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the displacement of maxima and minima occur. _
The greater sensitivity occurs for the minima L

of intensity, and its expectation is proportional bt

to the variance of motion. One looks for ,_2 and y

finds it to be _ QI L

o.2y = tan 2 0 _2x - _• Earlier, we saw the effect of frequency dis- Q2 :eP
persicn and the induced shift of the hologram,
so now we can easily see the minima's expec-
tation to be Figure 8-Relative Motion for Hologram ;

J
!
t

_J) 4tan20_'=,n= " '_"
A2 _

and the contrast ratio to be

tan 2 6 cr 2
I¢

0.)+,°
ax 1 +

A2

+4.2 - tan 2 _ c_c= (9)
A2 + tan 2 0 cr2

Energy Ratio, its D?pew.t,mce on the Emulsion's Properties

For the emulsion, the trar:sfer characteristic has been taken, for convenience and
good approximation, to be_o lit,ear with respect to intensity between two limits J=oxand
if,i., the transmittance, or op_t,'Aty,lying on the scale from zero to one but also limited
to t_ and to, respectively. Tt.e second-order effect of graininess, accounting for spread
of the images, has been includc_ in P. Clark Jones' analysis of information content of
emulsions. It is now the object of the present analysis to use these desiderata in realiz-
ing the energy ratio and resolut io_ for holograms.

#

We consider, fundamentally, that the transmittance will be probabilistically controlled
over the screen _Cs. y_ in response to the wave-potential _Cy,z), and the density func-
tion will be a continuous function :hereof, that is

• dP It(y, z)] =p['(l_b{y, z}l 2] dydz for y_Y, zeZ"

What we shall look for is an increased variance _ on the hologram arising from the
• random response of the screen _, and the simplest case to examine is the interference

pattern for two plane waves. Here. the variance _ is known to be normally dependent
on frequency dispersion, beam spreading, and vibration phenomena for the laser source.
These being independent phenomena, for instance, one would find
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11 1y Is_T___nel+ ...........+ %tan0 , m=0, +I,±..-,

the terms arising in the order given above and the variances determined at the minima of
the interference pattern. No term exists for the "variance" of the dispersed beam situa-
tion, the null losing its sharpness and becoming diffusively blurred. However, one can
still deal with the term "variance" as it does influence the qunatization for the hologram,
tt_eenergy ratio being

P=-)'(.*_+r.?_+........... +J-(7__mXgl

the minima determined by the variances. From foregoing analyses, we find

4 (10)p.=

re=O, _I, ±2,± .......,

ar.xdnoteanequivalentvariance.
/.

Now;toaccountforthevariationintransmittance.First,underthelinearcondi-
tion_ofP.ClarkJones,we notep isoneforthosewavepotentialsoutsidethelimitsof
the emulsion, is (t:/t o ) for extreme potentials still outside the limits, and is the above
number for those on the linear portion. Second, to reduce the energy ratio because of
t / 1, we observe that

f:__t'/= t2dPl:t(y, z)] for yeY, zeZ,

_t2_= _ t=pit( l,/,(y, ")l_b] at.

But p(t) =P_t o) _(t - to ) + p(t o < t < tl) + P(tx) 8(t - ti) , 80 in the vicinity of a
minimum, Jmtn = O_

19
4"

_t= = _0o t 2 p It (Tmin)] dt

= = to=O"t

while for a maximum, J===_ 4,

_t= = (x - t:)=.
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Note these are fluctuations with respect to the nulls and peaks, respectively. Clearly,
the variance is intensity sensitive and the same energy ratio tt/t o is still realizc,d under
extreme conditions. However, in the linear portion, we find

• t

b

and

t+

c_t2= f (t-_')211-P(t0)-P(tl)l dtAt- &
2

+[ l1 - P(t o) - P(tl)

o_= fat u2 At dt
2

l-P(to)-P(tt) ] (At)3°_t: At 12

when a uniform distribution is assumed. This variance implies that the energy ratio is

p.: 4 (n)

t l'l "°-rE ,1mo'k 1 - P(to) - P(tt)
: 4 -- ¢ (1 +4 +4 At

A sin 0| -k)%t A 12

re=O, +1, -+2, -+,"........ , ±N
!

when T=_, > t o > 0. Usually At << i", the graininess, hence the simpler relation for the
energy ratio is the one previously derived.

As a result of the study presented above, we see that the resolution was not obtained,
the variance _ not being determined readily, although the energy ratio fell on it quite
naturally. Additional study should reveal the resolution for the hologram.
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CORRELATION BETWEEN JITTER AND INFORMATION RECOVERY
IN PCM TELEMETERED DATA

by

Dr. PaulGoodman
AssistantProfessor,

Newark CollegeofEngineering,
• New Jersey

PROBLEM STATEMENT

The project objective was to create a method and equipment which would take as in-
put a PCM signal containing data, and produce as output a single number (called K in the
following) which would reliably predict the relative ease or difficulty of recovering error-
free data from the tape.

Such a method would allow greater care to be used when processing a tape predicted
(by K) to be difficult. Conversely, poor data recovery from a tape predicted to be excel- :
lent would indicate malfunctioning processing (data recovery) equipment, i

Procedures and Methods

A perfect, noiseless, split phase PCM signal has the following useful property: the
time interval between successive negative to positive (or positive to negative) transitions
is restricted to three values fixed by the bit transmission rate. For example, when one
thousand bits per second are transmitted, theory predicts measured transition times of
I, 1.5, and 2 milliseconds. Let us define three narrow intervals centered around these
three times, and let I_ be the fraction of all measurements falling within all three inter-
vals. Then it seems clear that K = 1.0 for a perfect signal, and K should decrease as
signal distortion increases, or equivalently as signal to noise ratio decreases. It also
seems clear that increasing signal distortion causes more errors in reading data.
Thereforea reasonablehypothesisisthata correlationexistsbetweenK and errorrate,
whichwillallowK tobe used as indicatedintheintroduction.

The work performed at GSFC this summer co_.sisted of defining the problem, planning
an experiment to test the hypothesis just mentioned, setting up equipment and carrying out
theexperiment,and interpretingtheresults.Inmore detail,thefollowingwas done.

1. Eleventapescontainingdataas telemeteredfrom theOGO S-49satellitewere
chosenfortheexperiment.The tapesspanneda rangefrom very poortoexcel-
lentdatarecovery.

2. Equipmentwas setup and transitiontimeswere measured automaticallyand re-
corded. Each tapewas sampledrandomly,and approximatelyone thousandsam-

° piesper tapewere recorded.
#

3. The measurements were transferred to punched cards, and a computer was then
used to find K for each tape, using intervals of ±5_ around each of the three '
noise-free transition times.

4. The values of K were compared with a prior knowledge of data errors in order
to establish the degree of correlation.

89

i
t

1966021864-094



RESULTS AND CONCLUSIONS

Out of eleven tapes, one could not be used because of experimental errors. Of the
remainer, six showed good correlation, two were border line, and two were poor.

In some cases a tape was run twice, and K was computed separately for each run.
Differences in K indicated that larger samples were called for, not a surprising conclu-
sion when one takes into account that one tape may contain forty million bits. Sample
size restricted to one thousand per tape because each measurement had to be transferred
by hand to a punched card, the resulting bottleneck making more samples impractical.

The correlation seems as good as possible, considering the small sample size.
Another unknown factor is errors caused by a malfunctioning process line. One tape in
particular was run twice, K was the same both times and was high enough to indicate
very few errors, yet relatively many errors had been noted when the tape was processed.

The final conclusion is that the results are promising and justify further experiments.
Equipment must be devised to automate the sampling procedure, especially the process of
getting the samples into final form suitable for computer input. This will allow larger
samples to be used and many more tapes to be analyzed.

A report now being written by the author contains more complete discussions, data,
conclusions, and recommendations for future investigations. This report forms the in-
troduction to the more complete report.

DataSelection

The followingtapeswere selectedby M. Pasternackas a representativecross-
sectionofsignalcharacteristics,based on a priorknowledgeofslippagerate(SR)and
biterrorrate(BER).

Table1
Tape Ratings

Station# 16 16 19 19 19 !_.0 20 20 20 20 20 20

Tape# 14 213 425 450 491 14 633 878 915 1418 1621 1667
,..._ , , ., ,

SR P - H P E - E E H H F H

BER H - P H P E E E P H F F

Each tapewas ratedforSR and BER as H (horrible),P (poor),F (fair),E (excellent).H
possible,futureinvestigationsshouldreplacethesewithnumericalvaluesforSR andBER,
in order to permit an actual computation of correlation. Tape #428 was never delivered,
and tape #14, Station 20 was not used for technical reasons.

Equipment

Tapes were playedona ConsolidatedElectro-dynamicsTape Recorder,Model VR-
2600. The signalwas takeninallcasesfrom channel2 containingtheso called"raw ."
data."R was then,inmost cases,passedthrougha low-passfilterinordertoeliminate
tapedecknoise,whenevernoiseand signalwere sufficientlyseparatedinfrequency.
Tape decknoisewas alwaysabovefortythousandcps,and signalfrequencycouldbe
loweredby changingtapespeed.The filterOUtlm_drovea HewlettPackard52436Elec-
tronicCounterwhose readingwas printedby a H_wlettPackard560A DigitalRecorder.
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The counter had a 10 megacycle clock, permitting resolution to 0.1 microsecond, which
was more than adequate.

The numbers thus obtained were punched on cards and then sorted to give the num-
ber of times each measurement occured. This was to be plotted as a distribution func-
tion by the 4020 plotter, but the programs we£e never successful. However, the distri-
butions were printed as output, and this permitted K to be computed by hand. Of course
this could be done much more easily by the computer, but it was not clear exactly what
was necessary when the program was written.

Results and Conclusions

Table 2 gives a summary of measurements, from which our conclusions are drawn.
Let us make a very simple rule and see how well SR is predicted. We assume that H
corresponds to 0 <_K < 0.25, P to 0.25 <_K < 0.5, F to .50 <_K < .75, and E to 0.75 _<K
< 1.0. In cases where two runs correspond to one tape, the average value of K is taken.

Table 2
Computed values of K

19-450 P ! H .21 40 8' i 'i ;

!-19-14 P ' H .39 60 16 2
!

19-425 H I P .27 40 8 3

20-633 E E .81 40 1 4

20-i667 H F ' ",61 40 1 5

20-878 E E .86 40 8 6

20-915 H P .85 40 8 7

20-915 H P .85 ® 8 8

20-1621 F F .30 co 1 9

20-1621 F F .50 30 1 I0
u _.,

19-491 E P .74 40 8 11

19-991 E P .34 40 8 12
T ".... i

20-1418 H H .69 40 g 13
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Table 3 shows the results for this and for predicting SR by the same rule. i

Table 3 i
Predicted and Actual BER, SR .

J.

BER BER SR SR

Tape K (Predicted) ! (Actual) (Predicted) (Actual)

19-450 .21 H H H P

. 16-14 .39 P H P P

19-425 .27 P P P H

20-633 _.81 E .... E E ....E

20-1667 .61 F F F H

20,876 .86 E E Z 1 E
20-915 .85 E P E H

20-1621 .40 P F P F

19-491 .54 F P F E

20-1418 .69 F H F H

BER is predicted correctly for 5 tapes, in three cases the prediction must be _
shifted up or down by one category (i.e., from P to H for tape 16-14) and in two cases a :,
shift of two categories is necessary. Corresponding numbers for SR are three correct,
four must be shifted by one category two need a shift of two, and one prediction is as far
as possible from being correct. Clearly there is a greater correlation between K and i
BER t_mnK and SR. Intheformer caseresultsseem quitepromising,leadingtoa ten-
tativeconclusionthatK can be usedtopredictBER.

ReturningtoTable2,we seethatthreetapeswere runtwice(runs7-12).IfK isto
have any meaningitmust be constantforany one tape.Therefore,thechangesinK be-
tweenruns9 and 10,and between11 and 12 must be eliminated.The causeofsuch
changesisverylikelytheverylimitedsample size,and thefactthateach setofsamples
were takenfrom,atmost,about25% ofthetape.The number ofbitsper tapesmay be of
theorderoftenmillion,thus,onethousandsamplesisnotvery much incomparison.
Therefore,futureexperimentsmust use many more samples,andthesamples shouldbe
spreaduniformlyovertheentirepartofthetapewhichcontainsdata.

Visual Inspection of Waveforms

A visualinspectionofsignalson alleleventapeswas made. The objectwas toex-
plorethepossibilityofdirectpredictionofSR or BER by some easilyrecognizedpattern
or signaldistortion.The tapeswere dividedintofourcategorieson thebasisofobserved
signaltonoiseratio,and theresultsare shown inTable4.

' Comparing this with Table 3 we see that BER w-_ predicted correctly five times by
K vs. four times visually, SR was correct three times in either case. Apparently K still
is more indicative of BER than SIR, and is a better predictor than visual recognition.

- Other reasons for preferring K are: it does not depend on human interpretation, it may
lead to more sophisticated ways to treat the samples in a statistical sense.
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Table 4
Visual Rating of Signals

Rati,g"
Tape (Visual) BER SR

19-450 H H H

16-14 P P H

'i9- .s F p
20-633 E E E

,.... j,.,,

20-166"/ E F F

20-$78 P E E

20'-915 '"P E P

20-1621 E P F

19-491 F F P

20-1418 P F H

The waveforms were reduced to strip charts showing amplitude vs. time, using two
tape recorders, a Consolidated Electrodynamics VR-2600, and an Ampex FR-600. Each _
tape was played on the VR 2609 at 3.75 i.p.s, and recorded on the FR 600 at 60 i.p.s., then
the recording was played back at 1-7/8 i.p.s, and recorded on a Honeywell 1508 Vlsi-
corder. R was necessary to use FM modules on the tape recorders for good low-frequency
response.

Future Work

Before this work is continued on an experimental basis, it ts necessary to set up
equipment capable of automatically transferring readings from the HI) electronic counter
to either punched cards or tape, the latter being preferable because of the rapidity with
which it can be entered into a computer. A larger number of tapes should be chosen, and
numerical values of BER should be known for them. Then ff K and numerical BER are
related, it will be apparent from experimental results. A range of +5c_for ;:omputing K
is not necessarily best, and a range of such values should be used to see the effect of
change.

Theoretical _.nvesttgaUons should be made for comparison with experimental results.
Two questions of a statistical nature seem appropriate:?

1. What is the expected distrflmtion of transition times as a function of signal to
noise ratio, for various well known types of noise such as white noise, shot
noise, etc?

2. What is an appropriate number of samples to ensure K being statistically
reliable ?

These are questions the author hopes to investigate during the coming school year.
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DEVELOPMENT OF THE 10.6-MICRON LASER

by
Dr. Zbigniew D. Jastrzebski_ Professor

Lafayette College, Easton, Pa.

!
STATEMENT OF THE PROBLEM

, The use of 10.6-micron laser for optical communication systems may offer certain
advantages as compared with the pulsed ruby laser u_:edpresen_,ly for tracking experi-
ments. These advantages are higher degree of beam coherence, h_,ss energy required
for an information bit at the receiver, and less atmospheric loss per unit distance.

The GSFC Optical Systems Branch has initiated the program aiming at the develop-
ment of an effective optical tracking system for communication between the Geddard
Optical Research Facility and the Echo H satellite. As a part of this program, I was
assigned to study and develop the 10.6-micron nitrogen-carbon dioxide laser.

P_ESENT STATE OF KNOWLEDGE

A strong C. W. lastng _ction in a nitrogen-carbon dioxide mixture under low pres-
sures (~lmm Hg) has been reported in literature. Lastng in infrared takes place when
vibrationally excite Ns -uolecules (V = 1) excite through inelastic collisions the COs
molecules (00°0) to the upper laser level (00°1). Nitrogen molecules fall back to their
vibrational ground-level (V = 1), leaving behind a large population of the excited COs
molecules. The main output lines occur at 10.5915 microns and at 10.5716 microns on
two rotational transitions of the 00°1 - 10°0 vibrational band with a C.W. power output
which may be as high as 11.9 watts.

EXPERIMENTAL

Two experimental setups have been des_gn:_d which _Cffer mainly in the arrangement
of flat reflective mirrors in respect to the Vycor discharge tube of 24ram I.D. and 122 cm
length. In one setup the goldplated mirrors form an integral part of the laser assembly,
being vacuum-tight connected to the ends of the discharge tube through metallic bellows.
In the second setup the gold-plated mirrors are located externally to the discharge tube
which is terminated by vacuum-tight Brewster angle windows. These windows and one
of the two gold-coated mirrors are made of Barium Fluoride. This mirror has one-.
millimeter diameter hole in the gold coating for coupling out the radiation; the other
mirror is 100_ opaque.

The discharge tube is connected through an outlet with the marLtfold of the vacuum
system so that it is possible to control precisely low partial pressures of the gaseous

ingredients. The necessary pumping power is obtained using a Viking L_vader Trans-mitter (C.W. 1000 watts) providing rf discharge of 28 Mc/sec. Only qualitative meas-
: ures for the detection of the infrared laser beam are now available.
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CONCLUSIONS

The experimental setups have been found to function satisfactorily. At the moment
of this writing, no appreciable lasing action has yet been noticed, but concrete results
are expected very shortly.

This project has been carried out under the guidance of Mr. Nelson McAvoy and !
with assistance of the other staff members of the Quantum Optics Section.
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